IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v45y1996i2p151-163.html
   My bibliography  Save this article

An Analysis of Paediatric Cd4 Counts for Acquired Immune Deficiency Syndrome Using Flexible Random Curves

Author

Listed:
  • Minggao Shi
  • Robert E. Weiss
  • Jeremy M. G. Taylor

Abstract

In this paper we analyse CD4 counts from infants born to mothers who are infected with the human immunodeficiency virus. A random effects model with linear or low order polynomials in time is unsatisfactory for these longitudinal data We develop an alternative approach based on a flexible family of models for which both the fixed and the random effects are linear combinations of β‐splines. The fixed and random parts are smooth functions of time and the covariance structure is parsimonious. The procedure allows estimates of each individual's smooth trajectory over time to be exhibited. Model selection, estimation and computation are discussed. Centile curves are presented that take into account the longitudinal nature of the data We emphasize a graphical approach to the presentation of results.

Suggested Citation

  • Minggao Shi & Robert E. Weiss & Jeremy M. G. Taylor, 1996. "An Analysis of Paediatric Cd4 Counts for Acquired Immune Deficiency Syndrome Using Flexible Random Curves," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(2), pages 151-163, June.
  • Handle: RePEc:bla:jorssc:v:45:y:1996:i:2:p:151-163
    DOI: 10.2307/2986151
    as

    Download full text from publisher

    File URL: https://doi.org/10.2307/2986151
    Download Restriction: no

    File URL: https://libkey.io/10.2307/2986151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming Xiong & Ao Yuan & Hong-Bin Fang & Colin O. Wu & Ming T. Tan, 2022. "Estimation and Hypothesis Test for Mean Curve with Functional Data by Reproducing Kernel Hilbert Space Methods, with Applications in Biostatistics," Mathematics, MDPI, vol. 10(23), pages 1-17, December.
    2. Peihua Qiu & Lu You, 2022. "Dynamic disease screening by joint modelling of survival and longitudinal data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1158-1180, November.
    3. Mengfei Ran & Yihe Yang, 2022. "Optimal Estimation of Large Functional and Longitudinal Data by Using Functional Linear Mixed Model," Mathematics, MDPI, vol. 10(22), pages 1-28, November.
    4. Park, Yeonjoo & Simpson, Douglas G., 2019. "Robust probabilistic classification applicable to irregularly sampled functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 37-49.
    5. Boland, Joanna & Telesca, Donatello & Sugar, Catherine & Jeste, Shafali & Goldbeck, Cameron & Senturk, Damla, 2022. "A study of longitudinal trends in time-frequency transformations of EEG data during a learning experiment," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    6. Mingfei Dong & Donatello Telesca & Catherine Sugar & Frederick Shic & Adam Naples & Scott P. Johnson & Beibin Li & Adham Atyabi & Minhang Xie & Sara J. Webb & Shafali Jeste & Susan Faja & April R. Lev, 2023. "A Functional Model for Studying Common Trends Across Trial Time in Eye Tracking Experiments," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 261-287, April.
    7. Justin Petrovich & Matthew Reimherr & Carrie Daymont, 2022. "Highly irregular functional generalized linear regression with electronic health records," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 806-833, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:45:y:1996:i:2:p:151-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.