Deep neural network classifier for multidimensional functional data
Author
Abstract
Suggested Citation
DOI: 10.1111/sjos.12660
Download full text from publisher
References listed on IDEAS
- A. Delaigle & P. Hall & N. Bathia, 2012. "Componentwise classification and clustering of functional data," Biometrika, Biometrika Trust, vol. 99(2), pages 299-313.
- Xiongtao Dai & Hans-Georg Müller & Fang Yao, 2017. "Optimal Bayes classifiers for functional data and density ratios," Biometrika, Biometrika Trust, vol. 104(3), pages 545-560.
- T. Tony Cai & Linjun Zhang, 2019. "High dimensional linear discriminant analysis: optimality, adaptive algorithm and missing data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(4), pages 675-705, September.
- Aurore Delaigle & Peter Hall, 2013. "Classification Using Censored Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1269-1283, December.
- José R. Berrendero & Antonio Cuevas & José L. Torrecilla, 2018. "On the Use of Reproducing Kernel Hilbert Spaces in Functional Classification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1210-1218, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mojirsheibani, Majid & Shaw, Crystal, 2018. "Classification with incomplete functional covariates," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 40-46.
- Park, Yeonjoo & Simpson, Douglas G., 2019. "Robust probabilistic classification applicable to irregularly sampled functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 37-49.
- Marco Stefanucci & Laura M. Sangalli & Pierpaolo Brutti, 2018. "PCA‐based discrimination of partially observed functional data, with an application to AneuRisk65 data set," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 246-264, August.
- Justin Petrovich & Matthew Reimherr & Carrie Daymont, 2022. "Highly irregular functional generalized linear regression with electronic health records," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 806-833, August.
- repec:cte:wsrepe:24606 is not listed on IDEAS
- Park, So Young & Xiao, Luo & Willbur, Jayson D. & Staicu, Ana-Maria & Jumbe, N. L’ntshotsholé, 2018. "A joint design for functional data with application to scheduling ultrasound scans," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 101-114.
- Kirkby, J. Lars & Leitao, Álvaro & Nguyen, Duy, 2021. "Nonparametric density estimation and bandwidth selection with B-spline bases: A novel Galerkin method," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Matthew W. Wheeler, 2019. "Bayesian additive adaptive basis tensor product models for modeling high dimensional surfaces: an application to high‐throughput toxicity testing," Biometrics, The International Biometric Society, vol. 75(1), pages 193-201, March.
- Berrendero, José R. & Bueno-Larraz, Beatriz & Cuevas, Antonio, 2019. "An RKHS model for variable selection in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 25-45.
- Weishampel, Anthony & Staicu, Ana-Maria & Rand, William, 2023. "Classification of social media users with generalized functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
- Golovkine, Steven & Klutchnikoff, Nicolas & Patilea, Valentin, 2022. "Clustering multivariate functional data using unsupervised binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
- Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
- Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2017. "Multivariate and functional classification using depth and distance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 445-466, September.
- José R. Berrendero & Beatriz Bueno-Larraz & Antonio Cuevas, 2023. "On functional logistic regression: some conceptual issues," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 321-349, March.
- Aurore Delaigle & Peter Hall & Tung Pham, 2019. "Clustering functional data into groups by using projections," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 271-304, April.
- Jianing Fan & Hans‐Georg Müller, 2022. "Conditional distribution regression for functional responses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 502-524, June.
- Antonio Elías & Raúl Jiménez & Han Lin Shang, 2023. "Depth-based reconstruction method for incomplete functional data," Computational Statistics, Springer, vol. 38(3), pages 1507-1535, September.
- Kraus, David & Stefanucci, Marco, 2020. "Ridge reconstruction of partially observed functional data is asymptotically optimal," Statistics & Probability Letters, Elsevier, vol. 165(C).
- Rasoul Lotfi & Davood Shahsavani & Mohammad Arashi, 2022. "Classification in High Dimension Using the Ledoit–Wolf Shrinkage Method," Mathematics, MDPI, vol. 10(21), pages 1-13, November.
- Zhang, Yi-Chen & Sakhanenko, Lyudmila, 2019. "The naive Bayes classifier for functional data," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 137-146.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:50:y:2023:i:4:p:1667-1686. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.