IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v67y1998i2p367-384.html
   My bibliography  Save this article

Convergence Rates for Logspline Tomography

Author

Listed:
  • Koo, Ja-Yong

Abstract

We consider bivariate logspline density estimation for tomography data. In the usual logspline density estimation for bivariate data, the logarithm of the unknown density function is estimated by tensor product splines, the unknown parameters of which are given by maximum likelihood. In this paper we use tensor product B-splines and the projection-slice theorem to construct the logspline density estimators for tomography data. Rates of convergence are established for log-density functions assumed to belong to a Besov space.

Suggested Citation

  • Koo, Ja-Yong, 1998. "Convergence Rates for Logspline Tomography," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 367-384, November.
  • Handle: RePEc:eee:jmvana:v:67:y:1998:i:2:p:367-384
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(98)91772-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koo, Ja-Yong, 1996. "Bivariate B-splines for tensor logspline density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 21(1), pages 31-42, January.
    2. Koo, Ja-Yong & Kim, Woo-Chul, 1996. "Wavelet density estimation by approximation of log-densities," Statistics & Probability Letters, Elsevier, vol. 26(3), pages 271-278, February.
    3. Kooperberg, Charles & Stone, Charles J., 1991. "A study of logspline density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 12(3), pages 327-347, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koo, Ja-Yong & Kooperberg, Charles, 2000. "Logspline density estimation for binned data," Statistics & Probability Letters, Elsevier, vol. 46(2), pages 133-147, January.
    2. Tomas Ruzgas & Mantas Lukauskas & Gedmantas Čepkauskas, 2021. "Nonparametric Multivariate Density Estimation: Case Study of Cauchy Mixture Model," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    3. Kirkby, J. Lars & Leitao, Álvaro & Nguyen, Duy, 2021. "Nonparametric density estimation and bandwidth selection with B-spline bases: A novel Galerkin method," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    4. Bak, Kwan-Young & Jhong, Jae-Hwan & Lee, JungJun & Shin, Jae-Kyung & Koo, Ja-Yong, 2021. "Penalized logspline density estimation using total variation penalty," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    5. Chang, Meng-Shiuh & Wu, Ximing, 2015. "Transformation-based nonparametric estimation of multivariate densities," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 71-88.
    6. Jérémie Bigot & Sébastien Van Bellegem, 2009. "Log‐density Deconvolution by Wavelet Thresholding," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 749-763, December.
    7. Göran Kauermann & Christian Schellhase & David Ruppert, 2013. "Flexible Copula Density Estimation with Penalized Hierarchical B-splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 685-705, December.
    8. Hadrich, Atizez & Zribi, Mourad & Masmoudi, Afif, 2016. "Bayesian expectation maximization algorithm by using B-splines functions: Application in image segmentation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 120(C), pages 50-63.
    9. Ronaldo Dias & Nancy L. Garcia & Guilherme Ludwig & Marley A. Saraiva, 2015. "Aggregated functional data model for near-infrared spectroscopy calibration and prediction," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(1), pages 127-143, January.
    10. Cribari-Neto, Francisco, 1993. "The Cyclical Component in Brazilian GDP," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 13(1), April.
    11. Lopes, Hedibert F. & Dias, Ronaldo, 2011. "Bayesian mixture of parametric and nonparametric density estimation: A Misspecification Problem," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 31(1), March.
    12. J. S. Marron & S. S. Chung, 2001. "Presentation of smoothers: the family approach," Computational Statistics, Springer, vol. 16(1), pages 195-207, March.
    13. Song, Seongjoo, 2010. "Lévy density estimation via information projection onto wavelet subspaces," Statistics & Probability Letters, Elsevier, vol. 80(21-22), pages 1623-1632, November.
    14. Vincent J. Carey & Carol J. Baker & Richard Platt, 2001. "Bayesian Inference on Protective Antibody Levels Using Case‐Control Data," Biometrics, The International Biometric Society, vol. 57(1), pages 135-142, March.
    15. Huh, Jib & Park, Cheolwoo, 2015. "Theoretical investigation of an exploratory approach for log-density in scale-space," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 272-279.
    16. Teruko Takada, 2001. "Nonparametric density estimation: A comparative study," Economics Bulletin, AccessEcon, vol. 3(16), pages 1-10.
    17. Talamakrouni, Majda & Van Keilegom, Ingrid & El Ghouch, Anouar, 2016. "Parametrically guided nonparametric density and hazard estimation with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 308-323.
    18. Koenker, Roger & Portnoy, Stephen, 2000. "Some pathological regression asymptotics under stable conditions," Statistics & Probability Letters, Elsevier, vol. 50(3), pages 219-228, November.
    19. Richard Spady & Sami Stouli, 2020. "Gaussian Transforms Modeling and the Estimation of Distributional Regression Functions," Papers 2011.06416, arXiv.org.
    20. Kwun Chuen Gary Chan & Mei-Cheng Wang, 2017. "Semiparametric Modeling and Estimation of the Terminal Behavior of Recurrent Marker Processes Before Failure Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 351-362, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:67:y:1998:i:2:p:367-384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.