IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v104y2017i3p545-560..html
   My bibliography  Save this article

Optimal Bayes classifiers for functional data and density ratios

Author

Listed:
  • Xiongtao Dai
  • Hans-Georg Müller
  • Fang Yao

Abstract

SummaryBayes classifiers for functional data pose a challenge. One difficulty is that probability density functions do not exist for functional data, so the classical Bayes classifier using density quotients needs to be modified. We propose to use density ratios of projections onto a sequence of eigenfunctions that are common to the groups to be classified. The density ratios are then factorized into density ratios of individual projection scores, reducing the classification problem to obtaining a series of one-dimensional nonparametric density estimates. The proposed classifiers can be viewed as an extension to functional data of some of the earliest nonparametric Bayes classifiers that were based on simple density ratios in the one-dimensional case. By means of the factorization of the density quotients, the curse of dimensionality that would otherwise severely affect Bayes classifiers for functional data can be avoided. We demonstrate that in the case of Gaussian functional data, the proposed functional Bayes classifier reduces to a functional version of the classical quadratic discriminant. A study of the asymptotic behaviour of the proposed classifiers in the large-sample limit shows that under certain conditions the misclassification rate converges to zero, a phenomenon that has been referred to as perfect classification. The proposed classifiers also perform favourably in finite-sample settings, as we demonstrate through comparisons with other functional classifiers in simulations and various data applications, including spectral data, functional magnetic resonance imaging data from attention deficit hyperactivity disorder patients, and yeast gene expression data.

Suggested Citation

  • Xiongtao Dai & Hans-Georg Müller & Fang Yao, 2017. "Optimal Bayes classifiers for functional data and density ratios," Biometrika, Biometrika Trust, vol. 104(3), pages 545-560.
  • Handle: RePEc:oup:biomet:v:104:y:2017:i:3:p:545-560.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asx024
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kirkby, J. Lars & Leitao, Álvaro & Nguyen, Duy, 2021. "Nonparametric density estimation and bandwidth selection with B-spline bases: A novel Galerkin method," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    2. Park, Yeonjoo & Simpson, Douglas G., 2019. "Robust probabilistic classification applicable to irregularly sampled functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 37-49.
    3. Song, Jun & Kim, Kyongwon & Yoo, Jae Keun, 2023. "On a nonlinear extension of the principal fitted component model," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    4. Justin Petrovich & Matthew Reimherr & Carrie Daymont, 2022. "Highly irregular functional generalized linear regression with electronic health records," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 806-833, August.
    5. Weishampel, Anthony & Staicu, Ana-Maria & Rand, William, 2023. "Classification of social media users with generalized functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    6. Yanchun Zhao & Mengzhu Zhang & Qian Ni & Xuhui Wang, 2023. "Adaptive Nonparametric Density Estimation with B-Spline Bases," Mathematics, MDPI, vol. 11(2), pages 1-12, January.
    7. Zhang, Yi-Chen & Sakhanenko, Lyudmila, 2019. "The naive Bayes classifier for functional data," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 137-146.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:104:y:2017:i:3:p:545-560.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.