IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v97y2010i4p851-865.html
   My bibliography  Save this article

Nonparametric Bayesian density estimation on manifolds with applications to planar shapes

Author

Listed:
  • Abhishek Bhattacharya
  • David B. Dunson

Abstract

Statistical analysis on landmark-based shape spaces has diverse applications in morphometrics, medical diagnostics, machine vision and other areas. These shape spaces are non-Euclidean quotient manifolds. To conduct nonparametric inferences, one may define notions of centre and spread on this manifold and work with their estimates. However, it is useful to consider full likelihood-based methods, which allow nonparametric estimation of the probability density. This article proposes a broad class of mixture models constructed using suitable kernels on a general compact metric space and then on the planar shape space in particular. Following a Bayesian approach with a nonparametric prior on the mixing distribution, conditions are obtained under which the Kullback--Leibler property holds, implying large support and weak posterior consistency. Gibbs sampling methods are developed for posterior computation, and the methods are applied to problems in density estimation and classification with shape-based predictors. Simulation studies show improved estimation performance relative to existing approaches. Copyright 2010, Oxford University Press.

Suggested Citation

  • Abhishek Bhattacharya & David B. Dunson, 2010. "Nonparametric Bayesian density estimation on manifolds with applications to planar shapes," Biometrika, Biometrika Trust, vol. 97(4), pages 851-865.
  • Handle: RePEc:oup:biomet:v:97:y:2010:i:4:p:851-865
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asq044
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rabi Bhattacharya & Rachel Oliver, 2019. "Nonparametric Analysis of Non-Euclidean Data on Shapes and Images," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 1-36, February.
    2. Daniele Durante & David B. Dunson & Joshua T. Vogelstein, 2017. "Nonparametric Bayes Modeling of Populations of Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1516-1530, October.
    3. Emil Cornea & Hongtu Zhu & Peter Kim & Joseph G. Ibrahim, 2017. "Regression models on Riemannian symmetric spaces," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 463-482, March.
    4. Kirkby, J. Lars & Leitao, Álvaro & Nguyen, Duy, 2021. "Nonparametric density estimation and bandwidth selection with B-spline bases: A novel Galerkin method," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    5. Lizhen Lin & Brian St. Thomas & Hongtu Zhu & David B. Dunson, 2017. "Extrinsic Local Regression on Manifold-Valued Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1261-1273, July.
    6. Abhishek Bhattacharya & David Dunson, 2012. "Strong consistency of nonparametric Bayes density estimation on compact metric spaces with applications to specific manifolds," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 687-714, August.
    7. Bhattacharya, Abhishek & Dunson, David, 2012. "Nonparametric Bayes classification and hypothesis testing on manifolds," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 1-19.
    8. Yanchun Zhao & Mengzhu Zhang & Qian Ni & Xuhui Wang, 2023. "Adaptive Nonparametric Density Estimation with B-Spline Bases," Mathematics, MDPI, vol. 11(2), pages 1-12, January.
    9. Bhattacharya, Rabi & Oliver, Rachel, 2020. "Superiority of Bayes estimators over the MLE in high dimensional multinomial models and its implication for nonparametric Bayes theory," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    10. Valdevino Félix de Lima, Wenia & David Costa do Nascimento, Abraão & José Amorim do Amaral, Getúlio, 2021. "Distance-based tests for planar shape," Journal of Multivariate Analysis, Elsevier, vol. 184(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:97:y:2010:i:4:p:851-865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.