Determining the Number of Effective Parameters in Kernel Density Estimation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2019.106843
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Linton, Oliver & Xiao, Zhijie, 2007.
"A Nonparametric Regression Estimator That Adapts To Error Distribution Of Unknown Form,"
Econometric Theory, Cambridge University Press, vol. 23(3), pages 371-413, June.
- Linton, Oliver Bruce & Xiao, Zhijie, 2001. "A nonparametric regression estimator that adapts to error distribution of unknown form," SFB 373 Discussion Papers 2001,33, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- Oliver Linton & Zhijie Xiao, 2001. "A Nonparametric Regression Estimator that Adapts to Error Distribution of Unknown Form," STICERD - Econometrics Paper Series 419, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Linton, Oliver & Xiao, Zhijie, 2001. "A nonparametric regression estimator that adapts to error distribution of unknown form," LSE Research Online Documents on Economics 2120, London School of Economics and Political Science, LSE Library.
- Li, Qi & Racine, Jeff, 2003. "Nonparametric estimation of distributions with categorical and continuous data," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 266-292, August.
- Henderson,Daniel J. & Parmeter,Christopher F., 2015.
"Applied Nonparametric Econometrics,"
Cambridge Books,
Cambridge University Press, number 9780521279680, November.
- Henderson,Daniel J. & Parmeter,Christopher F., 2015. "Applied Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9781107010253, November.
- Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
- Henderson Daniel J. & Parmeter Christopher F., 2017. "Root-n Consistent Kernel Density Estimation in Practice," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-10, January.
- Gerfin, Michael, 1996.
"Parametric and Semi-parametric Estimation of the Binary Response Model of Labor Market Participation,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(3), pages 321-339, May-June.
- Michael Gerfin, 1993. "Parametric and Semiparametric Estimation of the Binary Response Model of Labor Market Participation," Diskussionsschriften dp9315, Universitaet Bern, Departement Volkswirtschaft.
- Zhang, Chunming, 2003. "Calibrating the Degrees of Freedom for Automatic Data Smoothing and Effective Curve Checking," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 609-628, January.
- Li, Qi & Ouyang, Desheng, 2005. "Uniform convergence rate of kernel estimation with mixed categorical and continuous data," Economics Letters, Elsevier, vol. 86(2), pages 291-296, February.
- Gozalo, Pedro & Linton, Oliver, 2000. "Local nonlinear least squares: Using parametric information in nonparametric regression," Journal of Econometrics, Elsevier, vol. 99(1), pages 63-106, November.
- Nadine McCloud & Christopher F. Parmeter, 2017. "Calculating Degrees of Freedom in Multivariate Local Polynomial Regression," Working Papers 2017-14, University of Miami, Department of Economics.
- Ao Yuan & Jan G. De Gooijer, 2007.
"Semiparametric Regression with Kernel Error Model,"
Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 841-869, December.
- Ao Yuan & Jan G. De Gooijer, 2006. "Semiparametric Regression with Kernel Error Model," Tinbergen Institute Discussion Papers 06-058/4, Tinbergen Institute.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kirkby, J. Lars & Leitao, Álvaro & Nguyen, Duy, 2021. "Nonparametric density estimation and bandwidth selection with B-spline bases: A novel Galerkin method," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nuno Baetas da Silva & João Sousa Andrade, 2016. "The relationship between social transfers and poverty reduction: A nonparametric approach for the EU-27," GEMF Working Papers 2016-09, GEMF, Faculty of Economics, University of Coimbra.
- Xibin Zhang & Maxwell L. King & Han Lin Shang, 2016.
"Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors,"
Econometrics, MDPI, vol. 4(2), pages 1-27, April.
- Xibin Zhang & Maxwell L. King & Han Lin Shang, 2013. "Bayesian bandwidth selection for a nonparametric regession model with mixed types of regressors," Monash Econometrics and Business Statistics Working Papers 13/13, Monash University, Department of Econometrics and Business Statistics.
- Obbey Elamin & Len Gill & Martyn Andrews, 2020. "Insights from kernel conditional-probability estimates into female labour force participation decision in the UK," Empirical Economics, Springer, vol. 58(6), pages 2981-3006, June.
- Ranjeeta Thomas, 2012.
"Conditional Cash Transfers To Improve Education And Health: An Ex Ante Evaluation Of Red De Protección Social, Nicaragua,"
Health Economics, John Wiley & Sons, Ltd., vol. 21(10), pages 1136-1154, October.
- Thomas R., 2010. "Conditional Cash Transfers to Improve Education and Health: An Ex ante Evaluation of Red de Proteccion Social, Nicaragua," Health, Econometrics and Data Group (HEDG) Working Papers 10/04, HEDG, c/o Department of Economics, University of York.
- David H. Bernstein & Christopher F. Parmeter, 2017. "Returns to Scale in Electricity Generation: Revisited and Replicated," Working Papers 2017-08, University of Miami, Department of Economics.
- Besstremyannaya, Galina, 2015. "Measuring the effect of health insurance companies on the quality of healthcare systems with kernel and parametric regressions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 3-20.
- Jeffrey Racine, 2015.
"Mixed data kernel copulas,"
Empirical Economics, Springer, vol. 48(1), pages 37-59, February.
- Jeffrey S. Racine, 2013. "Mixed Data Kernel Copulas," Working Paper series 46_13, Rimini Centre for Economic Analysis.
- Jeffrey S. Racine, 2013. "Mixed Data Kernel Copulas," Department of Economics Working Papers 2013-12, McMaster University.
- Bontemps, Christophe & Racine, Jeffrey S. & Simioni, Michel, 2009.
"Nonparametric vs Parametric Binary Choice Models: An Empirical Investigation,"
TSE Working Papers
09-126, Toulouse School of Economics (TSE).
- Bontemps, Christophe & Racine, Jeffrey S. & Simioni, Michel, 2009. "Nonparametric vs parametric binary choice models: An empirical investigation," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49286, Agricultural and Applied Economics Association.
- Bontemps, Christophe & Racine, Jeffrey S. & Simioni, Michel, 2011. "Nonparametric vs parametric binary choice models: An empirical investigation," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 116005, European Association of Agricultural Economists.
- Daniel J. Henderson & Alexandre Olbrecht & Solomon W. Polachek, 2006.
"Do Former College Athletes Earn More at Work?: A Nonparametric Assessment,"
Journal of Human Resources, University of Wisconsin Press, vol. 41(3).
- Henderson, Daniel J. & Olbrecht, Alexandre & Polachek, Solomon, 2005. "Do Former College Athletes Earn More at Work? A Nonparametric Assessment," IZA Discussion Papers 1882, Institute of Labor Economics (IZA).
- Zhang, Xibin & King, Maxwell L. & Shang, Han Lin, 2014.
"A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density,"
Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 218-234.
- Xibin Zhang & Maxwell L. King & Han Lin Shang, 2013. "A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density," Monash Econometrics and Business Statistics Working Papers 20/13, Monash University, Department of Econometrics and Business Statistics.
- Escanciano, Juan Carlos & Song, Kyungchul, 2010. "Testing single-index restrictions with a focus on average derivatives," Journal of Econometrics, Elsevier, vol. 156(2), pages 377-391, June.
- Gavoille, Nicolas & Verschelde, Marijn, 2017.
"Electoral competition and political selection: An analysis of the activity of French deputies, 1958–2012,"
European Economic Review, Elsevier, vol. 92(C), pages 180-195.
- Nicolas GAVOILLE & Marijn VERSCHELDE, 2016. "Electoral competition and political selection: An analysis of the activity of French deputies, 1958-2012," Economics Working Paper from Condorcet Center for political Economy at CREM-CNRS 2016-02-ccr, Condorcet Center for political Economy.
- Nicolas Gavoille & Marijn Verschelde, 2017. "Electoral competition and political selection: An analysis of the activity of French deputies, 1958–2012," Post-Print hal-01745350, HAL.
- De Monte Enrico, 2024. "Nonparametric Instrumental Regression with Two-Way Fixed Effects," Journal of Econometric Methods, De Gruyter, vol. 13(1), pages 49-66, January.
- Das, Sonali & Racine, Jeffrey S., 2018. "Interactive nonparametric analysis of nonlinear systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 290-301.
- Bernstein, David H. & Parmeter, Christopher F., 2019. "Returns to scale in electricity generation: Replicated and revisited," Energy Economics, Elsevier, vol. 82(C), pages 4-15.
- Lee, Andrew C. & Kim, Man-Keun, 2011. "Captive Supply Impact On The U.S. Fed Cattle Price: An Application Of Nonparametric Analysis," Journal of Rural Development/Nongchon-Gyeongje, Korea Rural Economic Institute, vol. 34(4), pages 1-13, October.
- Wang, Qin & Yao, Weixin, 2012. "An adaptive estimation of MAVE," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 88-100, February.
- Christopher F. Parmeter & Valentin Zelenyuk, 2019. "Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis," Operations Research, INFORMS, vol. 67(6), pages 1628-1658, November.
- Yao, Weixin, 2013. "A note on EM algorithm for mixture models," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 519-526.
- Galina Besstremyannaya, 2014. "Urban inequity in the performance of social health insurance system: evidence from Russian regions," Working Papers w0204, Center for Economic and Financial Research (CEFIR).
More about this item
Keywords
Nonparametric density estimation; Degrees of freedom; Matrix trace; Hat matrix;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:143:y:2020:i:c:s0167947319301987. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.