Penalized logspline density estimation using total variation penalty
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2020.107060
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ja‐Yong Koo & Charles Kooperberg & Jinho Park, 1999. "Logspline Density Estimation under Censoring and Truncation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(1), pages 87-105, March.
- P. Tseng, 2001. "Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 109(3), pages 475-494, June.
- Koo, Ja-Yong & Kooperberg, Charles, 2000. "Logspline density estimation for binned data," Statistics & Probability Letters, Elsevier, vol. 46(2), pages 133-147, January.
- Sylvain Sardy & Paul Tseng, 2010. "Density Estimation by Total Variation Penalized Likelihood Driven by the Sparsity ℓ1 Information Criterion," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 321-337, June.
- Jérémie Bigot & Sébastien Van Bellegem, 2009.
"Log‐density Deconvolution by Wavelet Thresholding,"
Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 749-763, December.
- Bigot, Jérôme & Van Bellegem, Sébastien, 2009. "Log-Density Deconvolution by Wavelet Thresholding," IDEI Working Papers 635, Institut d'Économie Industrielle (IDEI), Toulouse.
- Bigot, Jérôme & Van Bellegem, Sébastien, 2009. "Log-Density Deconvolution by Wavelet Thresholding," TSE Working Papers 09-011, Toulouse School of Economics (TSE).
- Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
- Koo, Ja-Yong & Kim, Woo-Chul, 1996. "Wavelet density estimation by approximation of log-densities," Statistics & Probability Letters, Elsevier, vol. 26(3), pages 271-278, February.
- Qu, Leming & Yin, Wotao, 2012. "Copula density estimation by total variation penalized likelihood with linear equality constraints," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 384-398.
- Kooperberg, Charles & Stone, Charles J., 1991. "A study of logspline density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 12(3), pages 327-347, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.
- Koo, Ja-Yong & Kooperberg, Charles, 2000. "Logspline density estimation for binned data," Statistics & Probability Letters, Elsevier, vol. 46(2), pages 133-147, January.
- Federico Palacios-González & Rosa M. García-Fernández, 2020. "A faster algorithm to estimate multiresolution densities," Computational Statistics, Springer, vol. 35(3), pages 1207-1230, September.
- Nicholson, William B. & Matteson, David S. & Bien, Jacob, 2017. "VARX-L: Structured regularization for large vector autoregressions with exogenous variables," International Journal of Forecasting, Elsevier, vol. 33(3), pages 627-651.
- Griveau-Billion, Théophile & Richard, Jean-Charles & Roncalli, Thierry, 2013.
"A Fast Algorithm for Computing High-dimensional Risk Parity Portfolios,"
MPRA Paper
49822, University Library of Munich, Germany.
- Th'eophile Griveau-Billion & Jean-Charles Richard & Thierry Roncalli, 2013. "A Fast Algorithm for Computing High-dimensional Risk Parity Portfolios," Papers 1311.4057, arXiv.org.
- Koo, Ja-Yong, 1998. "Convergence Rates for Logspline Tomography," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 367-384, November.
- Murat Genç, 2022. "A new double-regularized regression using Liu and lasso regularization," Computational Statistics, Springer, vol. 37(1), pages 159-227, March.
- Runmin Shi & Faming Liang & Qifan Song & Ye Luo & Malay Ghosh, 2018. "A Blockwise Consistency Method for Parameter Estimation of Complex Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 179-223, December.
- Michoel, Tom, 2016. "Natural coordinate descent algorithm for L1-penalised regression in generalised linear models," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 60-70.
- Lopes, Hedibert F. & Dias, Ronaldo, 2011. "Bayesian mixture of parametric and nonparametric density estimation: A Misspecification Problem," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 31(1), March.
- Sylvain Sardy & Paul Tseng, 2010. "Density Estimation by Total Variation Penalized Likelihood Driven by the Sparsity ℓ1 Information Criterion," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 321-337, June.
- Pan, Yuqing & Mai, Qing, 2020. "Efficient computation for differential network analysis with applications to quadratic discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Matthew Pietrosanu & Jueyu Gao & Linglong Kong & Bei Jiang & Di Niu, 2021. "Advanced algorithms for penalized quantile and composite quantile regression," Computational Statistics, Springer, vol. 36(1), pages 333-346, March.
- Benjamin G. Stokell & Rajen D. Shah & Ryan J. Tibshirani, 2021. "Modelling high‐dimensional categorical data using nonconvex fusion penalties," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 579-611, July.
- Victor Chernozhukov & Whitney K. Newey & Rahul Singh, 2022.
"Automatic Debiased Machine Learning of Causal and Structural Effects,"
Econometrica, Econometric Society, vol. 90(3), pages 967-1027, May.
- Victor Chernozhukov & Whitney K Newey & Rahul Singh, 2018. "Automatic Debiased Machine Learning of Causal and Structural Effects," Papers 1809.05224, arXiv.org, revised Oct 2022.
- Cheik Traoré & Saverio Salzo & Silvia Villa, 2023. "Convergence of an asynchronous block-coordinate forward-backward algorithm for convex composite optimization," Computational Optimization and Applications, Springer, vol. 86(1), pages 303-344, September.
- Wu, Tong Tong & He, Xin, 2012. "Coordinate ascent for penalized semiparametric regression on high-dimensional panel count data," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 25-33, January.
- Sarah Perrin & Thierry Roncalli, 2019. "Machine Learning Optimization Algorithms & Portfolio Allocation," Papers 1909.10233, arXiv.org.
- Evans, R.J. & Forcina, A., 2013. "Two algorithms for fitting constrained marginal models," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 1-7.
- Mingyi Hong & Tsung-Hui Chang & Xiangfeng Wang & Meisam Razaviyayn & Shiqian Ma & Zhi-Quan Luo, 2020. "A Block Successive Upper-Bound Minimization Method of Multipliers for Linearly Constrained Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 833-861, August.
More about this item
Keywords
B-spline; Coordinate descent algorithm; Kullback–Leibler divergence; Optimal convergence rate; Oracle inequality;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:153:y:2021:i:c:s0167947320301511. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.