IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v86y2023i1d10.1007_s10589-023-00489-w.html
   My bibliography  Save this article

Convergence of an asynchronous block-coordinate forward-backward algorithm for convex composite optimization

Author

Listed:
  • Cheik Traoré

    (Università degli Studi di Genova)

  • Saverio Salzo

    (DIAG, Sapienza Università di Roma)

  • Silvia Villa

    (Università degli Studi di Genova)

Abstract

In this paper, we study the convergence properties of a randomized block-coordinate descent algorithm for the minimization of a composite convex objective function, where the block-coordinates are updated asynchronously and randomly according to an arbitrary probability distribution. We prove that the iterates generated by the algorithm form a stochastic quasi-Fejér sequence and thus converge almost surely to a minimizer of the objective function. Moreover, we prove a general sublinear rate of convergence in expectation for the function values and a linear rate of convergence in expectation under an error bound condition of Tseng type. Under the same condition strong convergence of the iterates is provided as well as their linear convergence rate.

Suggested Citation

  • Cheik Traoré & Saverio Salzo & Silvia Villa, 2023. "Convergence of an asynchronous block-coordinate forward-backward algorithm for convex composite optimization," Computational Optimization and Applications, Springer, vol. 86(1), pages 303-344, September.
  • Handle: RePEc:spr:coopap:v:86:y:2023:i:1:d:10.1007_s10589-023-00489-w
    DOI: 10.1007/s10589-023-00489-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-023-00489-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-023-00489-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Tseng, 2001. "Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 109(3), pages 475-494, June.
    2. NESTEROV, Yurii, 2013. "Gradient methods for minimizing composite functions," LIDAM Reprints CORE 2510, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
    2. Griveau-Billion, Théophile & Richard, Jean-Charles & Roncalli, Thierry, 2013. "A Fast Algorithm for Computing High-dimensional Risk Parity Portfolios," MPRA Paper 49822, University Library of Munich, Germany.
    3. Murat Genç, 2022. "A new double-regularized regression using Liu and lasso regularization," Computational Statistics, Springer, vol. 37(1), pages 159-227, March.
    4. Pan, Yuqing & Mai, Qing, 2020. "Efficient computation for differential network analysis with applications to quadratic discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    5. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "Multi-block Bregman proximal alternating linearized minimization and its application to orthogonal nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 79(3), pages 681-715, July.
    6. Matthew Pietrosanu & Jueyu Gao & Linglong Kong & Bei Jiang & Di Niu, 2021. "Advanced algorithms for penalized quantile and composite quantile regression," Computational Statistics, Springer, vol. 36(1), pages 333-346, March.
    7. Wu, Tong Tong & He, Xin, 2012. "Coordinate ascent for penalized semiparametric regression on high-dimensional panel count data," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 25-33, January.
    8. Victor Chernozhukov & Whitney K. Newey & Rahul Singh, 2022. "Automatic Debiased Machine Learning of Causal and Structural Effects," Econometrica, Econometric Society, vol. 90(3), pages 967-1027, May.
    9. Evans, R.J. & Forcina, A., 2013. "Two algorithms for fitting constrained marginal models," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 1-7.
    10. Jian Huang & Yuling Jiao & Lican Kang & Jin Liu & Yanyan Liu & Xiliang Lu, 2022. "GSDAR: a fast Newton algorithm for $$\ell _0$$ ℓ 0 regularized generalized linear models with statistical guarantee," Computational Statistics, Springer, vol. 37(1), pages 507-533, March.
    11. Jean-Charles Richard & Thierry Roncalli, 2019. "Constrained Risk Budgeting Portfolios: Theory, Algorithms, Applications & Puzzles," Papers 1902.05710, arXiv.org.
    12. Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.
    13. Dewei Zhang & Yin Liu & Sam Davanloo Tajbakhsh, 2022. "A First-Order Optimization Algorithm for Statistical Learning with Hierarchical Sparsity Structure," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1126-1140, March.
    14. Nicholson, William B. & Matteson, David S. & Bien, Jacob, 2017. "VARX-L: Structured regularization for large vector autoregressions with exogenous variables," International Journal of Forecasting, Elsevier, vol. 33(3), pages 627-651.
    15. Kimon Fountoulakis & Jacek Gondzio, 2016. "Performance of first- and second-order methods for $$\ell _1$$ ℓ 1 -regularized least squares problems," Computational Optimization and Applications, Springer, vol. 65(3), pages 605-635, December.
    16. Patrick R. Johnstone & Pierre Moulin, 2017. "Local and global convergence of a general inertial proximal splitting scheme for minimizing composite functions," Computational Optimization and Applications, Springer, vol. 67(2), pages 259-292, June.
    17. Runmin Shi & Faming Liang & Qifan Song & Ye Luo & Malay Ghosh, 2018. "A Blockwise Consistency Method for Parameter Estimation of Complex Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 179-223, December.
    18. Michoel, Tom, 2016. "Natural coordinate descent algorithm for L1-penalised regression in generalised linear models," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 60-70.
    19. Bak, Kwan-Young & Jhong, Jae-Hwan & Lee, JungJun & Shin, Jae-Kyung & Koo, Ja-Yong, 2021. "Penalized logspline density estimation using total variation penalty," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    20. Benjamin G. Stokell & Rajen D. Shah & Ryan J. Tibshirani, 2021. "Modelling high‐dimensional categorical data using nonconvex fusion penalties," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 579-611, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:86:y:2023:i:1:d:10.1007_s10589-023-00489-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.