IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i2p384-398.html
   My bibliography  Save this article

Copula density estimation by total variation penalized likelihood with linear equality constraints

Author

Listed:
  • Qu, Leming
  • Yin, Wotao

Abstract

A copula density is the joint probability density function (PDF) of a random vector with uniform marginals. An approach to bivariate copula density estimation is introduced that is based on maximum penalized likelihood estimation (MPLE) with a total variation (TV) penalty term. The marginal unity and symmetry constraints for copula density are enforced by linear equality constraints. The TV-MPLE subject to linear equality constraints is solved by an augmented Lagrangian and operator-splitting algorithm. It offers an order of magnitude improvement in computational efficiency over another TV-MPLE method without constraints solved by the log-barrier method for the second order cone program. A data-driven selection of the regularization parameter is through K-fold cross-validation (CV). Simulation and real data application show the effectiveness of the proposed approach. The MATLAB code implementing the methodology is available online.

Suggested Citation

  • Qu, Leming & Yin, Wotao, 2012. "Copula density estimation by total variation penalized likelihood with linear equality constraints," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 384-398.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:2:p:384-398
    DOI: 10.1016/j.csda.2011.07.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311002830
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.07.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. Malevergne & D. Sornette, 2003. "Testing the Gaussian copula hypothesis for financial assets dependences," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 231-250.
    2. van der Laan Mark J. & Dudoit Sandrine & Keles Sunduz, 2004. "Asymptotic Optimality of Likelihood-Based Cross-Validation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-25, March.
    3. Sylvain Sardy & Paul Tseng, 2010. "Density Estimation by Total Variation Penalized Likelihood Driven by the Sparsity ℓ1 Information Criterion," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 321-337, June.
    4. Trivedi, Pravin K. & Zimmer, David M., 2007. "Copula Modeling: An Introduction for Practitioners," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(1), pages 1-111, April.
    5. Lambert, Philippe, 2007. "Archimedean copula estimation using Bayesian splines smoothing techniques," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6307-6320, August.
    6. Fermanian, Jean-David & Scaillet, Olivier, 2003. "Nonparametric estimation of copulas for time series," Working Papers unige:41797, University of Geneva, Geneva School of Economics and Management.
    7. Christian Genest & Michel Gendron & Michaël Bourdeau-Brien, 2009. "The Advent of Copulas in Finance," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 609-618.
    8. Sancetta, Alessio & Satchell, Stephen, 2004. "The Bernstein Copula And Its Applications To Modeling And Approximations Of Multivariate Distributions," Econometric Theory, Cambridge University Press, vol. 20(3), pages 535-562, June.
    9. Autin, F. & Le Pennec, E. & Tribouley, K., 2010. "Thresholding methods to estimate copula density," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 200-222, January.
    10. Peter Hall & Natalie Neumeyer, 2006. "Estimating a bivariate density when there are extra data on one or both components," Biometrika, Biometrika Trust, vol. 93(2), pages 439-450, June.
    11. Rodriguez, Juan Carlos, 2007. "Measuring financial contagion: A Copula approach," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 401-423, June.
    12. Shen, Xiaojing & Zhu, Yunmin & Song, Lixin, 2008. "Linear B-spline copulas with applications to nonparametric estimation of copulas," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3806-3819, March.
    13. Markus Junker & Angelika May, 2005. "Measurement of aggregate risk with copulas," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 428-454, December.
    14. Paul Embrechts, 2009. "Copulas: A Personal View," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 639-650, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Göran Kauermann & Christian Schellhase & David Ruppert, 2013. "Flexible Copula Density Estimation with Penalized Hierarchical B-splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 685-705, December.
    2. repec:hal:wpaper:hal-00834000 is not listed on IDEAS
    3. Bak, Kwan-Young & Jhong, Jae-Hwan & Lee, JungJun & Shin, Jae-Kyung & Koo, Ja-Yong, 2021. "Penalized logspline density estimation using total variation penalty," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    4. Eddie Anderson & Artem Prokhorov & Yajing Zhu, 2020. "A Simple Estimator of Two‐Dimensional Copulas, with Applications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1375-1412, December.
    5. Gery Geenens & Arthur Charpentier & Davy Paindaveine, 2014. "Probit Transformation for Nonparametric Kernel Estimation of the Copula Density," Working Papers ECARES ECARES 2014-23, ULB -- Universite Libre de Bruxelles.
    6. Elena Di Bernardino & Clémentine Prieur, 2014. "Estimation of multivariate conditional-tail-expectation using Kendall's process," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 241-267, June.
    7. Di Bernardino Elena & Rullière Didier, 2013. "On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators," Dependence Modeling, De Gruyter, vol. 1(2013), pages 1-36, October.
    8. Pengfei Wei & Zhenzhou Lu & Jingwen Song, 2014. "Moment‐Independent Sensitivity Analysis Using Copula," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 210-222, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Göran Kauermann & Christian Schellhase & David Ruppert, 2013. "Flexible Copula Density Estimation with Penalized Hierarchical B-splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 685-705, December.
    2. Diks, Cees & Panchenko, Valentyn & van Dijk, Dick, 2010. "Out-of-sample comparison of copula specifications in multivariate density forecasts," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1596-1609, September.
    3. Diers, Dorothea & Eling, Martin & Marek, Sebastian D., 2012. "Dependence modeling in non-life insurance using the Bernstein copula," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 430-436.
    4. Romera, Rosario & Molanes, Elisa M., 2008. "Copulas in finance and insurance," DES - Working Papers. Statistics and Econometrics. WS ws086321, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Gery Geenens & Arthur Charpentier & Davy Paindaveine, 2014. "Probit Transformation for Nonparametric Kernel Estimation of the Copula Density," Working Papers ECARES ECARES 2014-23, ULB -- Universite Libre de Bruxelles.
    6. Amjad, Muhammad & Akbar, Muhammad & Ullah, Hamd, 2022. "A copula-based approach for creating an index of micronutrient intakes at household level in Pakistan," Economics & Human Biology, Elsevier, vol. 46(C).
    7. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    8. Hernández-Lobato, José Miguel & Suárez, Alberto, 2011. "Semiparametric bivariate Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2038-2058, June.
    9. Gregor Weiß, 2011. "Copula parameter estimation by maximum-likelihood and minimum-distance estimators: a simulation study," Computational Statistics, Springer, vol. 26(1), pages 31-54, March.
    10. Chollete, Loran & Ning, Cathy, 2009. "The Dependence Structure of Macroeconomic Variables in the US," UiS Working Papers in Economics and Finance 2009/31, University of Stavanger.
    11. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    12. Katarzyna Bień-Barkowska, 2012. "A Bivariate Copula-based Model for a Mixed Binary-Continuous Distribution: A Time Series Approach," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 4(2), pages 117-142, June.
    13. Weiß, Gregor N.F., 2011. "Are Copula-GoF-tests of any practical use? Empirical evidence for stocks, commodities and FX futures," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(2), pages 173-188, May.
    14. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    15. Brodsky, Boris & Penikas, Henry & Safaryan, Irina, 2009. "Detection of Structural Breaks in Copula Models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 16(4), pages 3-15.
    16. Chollete, Loran & Ning, Cathy, 2010. "Asymmetric Dependence in US Financial Risk Factors?," UiS Working Papers in Economics and Finance 2011/2, University of Stavanger.
    17. Boris Brodsky & Henry Penikas & Irina Safaryan, 2012. "Copula structural shift identification," HSE Working papers WP BRP 05/FE/2012, National Research University Higher School of Economics.
    18. Dimitrova, Dimitrina S. & Kaishev, Vladimir K. & Penev, Spiridon I., 2008. "GeD spline estimation of multivariate Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3570-3582, March.
    19. Morettin Pedro A. & Toloi Clelia M.C. & Chiann Chang & de Miranda José C.S., 2011. "Wavelet Estimation of Copulas for Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-31, October.
    20. Harvey, A., 2008. "Dynamic distributions and changing copulas," Cambridge Working Papers in Economics 0839, Faculty of Economics, University of Cambridge.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:2:p:384-398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.