IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v103y2016i1p175-187..html
   My bibliography  Save this article

Semiparametric inverse propensity weighting for nonignorable missing data

Author

Listed:
  • Jun Shao
  • Lei Wang

Abstract

To estimate unknown population parameters based on data having nonignorable missing values with a semiparametric exponential tilting propensity, Kim & Yu (2011) assumed that the tilting parameter is known or can be estimated from external data, in order to avoid the identifiability issue. To remove this serious limitation on the methodology, we use an instrument, i.e., a covariate related to the study variable but unrelated to the missing data propensity, to construct some estimating equations. Because these estimating equations are semiparametric, we profile the nonparametric component using a kernel-type estimator and then estimate the tilting parameter based on the profiled estimating equations and the generalized method of moments. Once the tilting parameter is estimated, so is the propensity, and then other population parameters can be estimated using the inverse propensity weighting approach. Consistency and asymptotic normality of the proposed estimators are established. The finite-sample performance of the estimators is studied through simulation, and a real-data example is also presented.

Suggested Citation

  • Jun Shao & Lei Wang, 2016. "Semiparametric inverse propensity weighting for nonignorable missing data," Biometrika, Biometrika Trust, vol. 103(1), pages 175-187.
  • Handle: RePEc:oup:biomet:v:103:y:2016:i:1:p:175-187.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asv071
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Newey, Whitney K., 1994. "Kernel Estimation of Partial Means and a General Variance Estimator," Econometric Theory, Cambridge University Press, vol. 10(2), pages 1-21, June.
    2. repec:mpr:mprres:8160 is not listed on IDEAS
    3. Sheng Wang & Jun Shao & Jae Kwang Kim, "undated". "An Instrumental Variable Approach for Identification and Estimation with Nonignorable Nonresponse," Mathematica Policy Research Reports a9593fac2c9746f486d2162f9, Mathematica Policy Research.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers CWP20/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Hoderlein, Stefan & White, Halbert, 2012. "Nonparametric identification in nonseparable panel data models with generalized fixed effects," Journal of Econometrics, Elsevier, vol. 168(2), pages 300-314.
    3. Nir Billfeld & Moshe Kim, 2024. "Context-dependent Causality (the Non-Nonotonic Case)," Papers 2404.05021, arXiv.org.
    4. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    5. Peter Malec, 2016. "A Semiparametric Intraday GARCH Model," Cambridge Working Papers in Economics 1633, Faculty of Economics, University of Cambridge.
    6. Cherchye, Laurens & Demuynck, Thomas & De Rock, Bram, 2013. "The empirical content of Cournot competition," Journal of Economic Theory, Elsevier, vol. 148(4), pages 1552-1581.
    7. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Gayle, Wayne-Roy & Namoro, Soiliou Daw, 2013. "Estimation of a nonlinear panel data model with semiparametric individual effects," Journal of Econometrics, Elsevier, vol. 175(1), pages 46-59.
    9. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.
    10. Ying Wang & Peter C. B. Phillips & Yundong Tu, 2024. "Limit Theory and Inference in Non-cointegrated Functional Coefficient Regression," Cowles Foundation Discussion Papers 2399, Cowles Foundation for Research in Economics, Yale University.
    11. Bhattacharya, Debopam & Dupas, Pascaline, 2012. "Inferring welfare maximizing treatment assignment under budget constraints," Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
    12. Rob Euwals & Bertrand Melenberg & Arthur van Soest, 1998. "Testing the predictive value of subjective labour supply data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(5), pages 567-585.
    13. Donald, Stephen G. & Fortuna, Natércia & Pipiras, Vladas, 2011. "Local and Global Rank Tests for Multivariate Varying-Coefficient Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 295-306.
    14. León Beleña & Ernesto Curbelo & Luca Martino & Valero Laparra, 2024. "Second-Moment/Order Approximations by Kernel Smoothers with Application to Volatility Estimation," Mathematics, MDPI, vol. 12(9), pages 1-15, May.
    15. Sperlich, Stefan & Tjøstheim, Dag & Yang, Lijian, 2002. "Nonparametric Estimation And Testing Of Interaction In Additive Models," Econometric Theory, Cambridge University Press, vol. 18(2), pages 197-251, April.
    16. Richard W. Blundell & James L. Powell, 2004. "Endogeneity in Semiparametric Binary Response Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(3), pages 655-679.
    17. Arellano, Manuel & Carrasco, Raquel, 2003. "Binary choice panel data models with predetermined variables," Journal of Econometrics, Elsevier, vol. 115(1), pages 125-157, July.
    18. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers 20/12, Institute for Fiscal Studies.
    19. Choe, Chung & Flores-Lagunes, Alfonso & Lee, Sang-Jun, 2011. "Do Dropouts Benefit from Training Programs? Korean Evidence Employing Methods for Continuous Treatments," IZA Discussion Papers 6064, Institute of Labor Economics (IZA).
    20. Dennis Kristensen, 2009. "Semiparametric Modelling and Estimation: A Selective Overview," CREATES Research Papers 2009-44, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:103:y:2016:i:1:p:175-187.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.