IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v45y2018i2p324-346.html
   My bibliography  Save this article

How to Make Model†free Feature Screening Approaches for Full Data Applicable to the Case of Missing Response?

Author

Listed:
  • Qihua Wang
  • Yongjin Li

Abstract

It is quite a challenge to develop model†free feature screening approaches for missing response problems because the existing standard missing data analysis methods cannot be applied directly to high dimensional case. This paper develops some novel methods by borrowing information of missingness indicators such that any feature screening procedures for ultrahigh†dimensional covariates with full data can be applied to missing response case. The first method is the so†called missing indicator imputation screening, which is developed by proving that the set of the active predictors of interest for the response is a subset of the active predictors for the product of the response and missingness indicator under some mild conditions. As an alternative, another method called Venn diagram†based approach is also developed. The sure screening property is proven for both methods. It is shown that the complete case analysis can also keep the sure screening property of any feature screening approach with sure screening property.

Suggested Citation

  • Qihua Wang & Yongjin Li, 2018. "How to Make Model†free Feature Screening Approaches for Full Data Applicable to the Case of Missing Response?," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(2), pages 324-346, June.
  • Handle: RePEc:bla:scjsta:v:45:y:2018:i:2:p:324-346
    DOI: 10.1111/sjos.12290
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12290
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12290?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adriano Zanin Zambom & Gregory J. Matthews, 2021. "Sure independence screening in the presence of missing data," Statistical Papers, Springer, vol. 62(2), pages 817-845, April.
    2. Zhang, Jing & Wang, Qihua & Kang, Jian, 2020. "Feature screening under missing indicator imputation with non-ignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    3. Yuting Wei & Qihua Wang & Wei Liu, 2021. "Model averaging for linear models with responses missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 535-553, June.
    4. Xianwen Ding & Jiandong Chen & Xueping Chen, 2020. "Regularized quantile regression for ultrahigh-dimensional data with nonignorable missing responses," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(5), pages 545-568, July.
    5. Tang, Niansheng & Xia, Linli & Yan, Xiaodong, 2019. "Feature screening in ultrahigh-dimensional partially linear models with missing responses at random," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 208-227.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:45:y:2018:i:2:p:324-346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.