IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v34y2007i4p841-869.html
   My bibliography  Save this article

Semiparametric Regression with Kernel Error Model

Author

Listed:
  • AO YUAN
  • JAN G. DE GOOIJER

Abstract

. We propose and study a class of regression models, in which the mean function is specified parametrically as in the existing regression methods, but the residual distribution is modelled non‐parametrically by a kernel estimator, without imposing any assumption on its distribution. This specification is different from the existing semiparametric regression models. The asymptotic properties of such likelihood and the maximum likelihood estimate (MLE) under this semiparametric model are studied. We show that under some regularity conditions, the MLE under this model is consistent (when compared with the possibly pseudo‐consistency of the parameter estimation under the existing parametric regression model), is asymptotically normal with rate and efficient. The non‐parametric pseudo‐likelihood ratio has the Wilks property as the true likelihood ratio does. Simulated examples are presented to evaluate the accuracy of the proposed semiparametric MLE method.

Suggested Citation

  • Ao Yuan & Jan G. De Gooijer, 2007. "Semiparametric Regression with Kernel Error Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 841-869, December.
  • Handle: RePEc:bla:scjsta:v:34:y:2007:i:4:p:841-869
    DOI: 10.1111/j.1467-9469.2006.00531.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2006.00531.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2006.00531.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
    2. Harry Joe, 1989. "Estimation of entropy and other functionals of a multivariate density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 41(4), pages 683-697, December.
    3. J. Pfanzagl, 1969. "On the measurability and consistency of minimum contrast estimates," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 14(1), pages 249-272, December.
    4. Hall, Peter, 1986. "On powerful distributional tests based on sample spacings," Journal of Multivariate Analysis, Elsevier, vol. 19(2), pages 201-224, August.
    5. McDonald, James B. & Newey, Whitney K., 1988. "Partially Adaptive Estimation of Regression Models via the Generalized T Distribution," Econometric Theory, Cambridge University Press, vol. 4(3), pages 428-457, December.
    6. Newey, Whitney K., 1988. "Adaptive estimation of regression models via moment restrictions," Journal of Econometrics, Elsevier, vol. 38(3), pages 301-339, July.
    7. Peter Hall & Sally Morton, 1993. "On the estimation of entropy," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(1), pages 69-88, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xibin Zhang & Maxwell L. King, 2011. "Bayesian semiparametric GARCH models," Monash Econometrics and Business Statistics Working Papers 24/11, Monash University, Department of Econometrics and Business Statistics.
    2. Jan G. De Gooijer & Ao Yuan, 2008. "MDL Mean Function Selection in Semiparametric Kernel Regression Models," Tinbergen Institute Discussion Papers 08-046/4, Tinbergen Institute.
    3. Zhang, Jun & Lin, Bingqing & Zhou, Yan, 2021. "Kernel density estimation for partial linear multivariate responses models," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    4. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2011. "Bayesian estimation of bandwidths for a nonparametric regression model with a flexible error density," Monash Econometrics and Business Statistics Working Papers 10/11, Monash University, Department of Econometrics and Business Statistics.
    5. Yao, Weixin, 2013. "A note on EM algorithm for mixture models," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 519-526.
    6. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2016. "Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors," Econometrics, MDPI, vol. 4(2), pages 1-27, April.
    7. Xibin Zhang & Maxwell L. King, 2013. "Gaussian kernel GARCH models," Monash Econometrics and Business Statistics Working Papers 19/13, Monash University, Department of Econometrics and Business Statistics.
    8. De Gooijer, Jan G. & Reichardt, Hugo, 2021. "A multi-step kernel–based regression estimator that adapts to error distributions of unknown form," LSE Research Online Documents on Economics 115083, London School of Economics and Political Science, LSE Library.
    9. Guohua Feng & Chuan Wang & Xibin Zhang, 2019. "Estimation of inefficiency in stochastic frontier models: a Bayesian kernel approach," Journal of Productivity Analysis, Springer, vol. 51(1), pages 1-19, February.
    10. Chee, Chew-Seng & Seo, Byungtae, 2020. "Semiparametric estimation for linear regression with symmetric errors," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    11. Zhang, Xibin & King, Maxwell L. & Shang, Han Lin, 2014. "A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 218-234.
    12. Chen, Yixin & Wang, Qin & Yao, Weixin, 2015. "Adaptive estimation for varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 17-31.
    13. Wang, Qin & Yao, Weixin, 2012. "An adaptive estimation of MAVE," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 88-100, February.
    14. McCloud, Nadine & Parmeter, Christopher F., 2020. "Determining the Number of Effective Parameters in Kernel Density Estimation," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ao Yuan, 2009. "Semiparametric inference with kernel likelihood," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(2), pages 207-228.
    2. Gupta, A, 2015. "Nonparametric specification testing via the trinity of tests," Economics Discussion Papers 15619, University of Essex, Department of Economics.
    3. Jan G. De Gooijer & Ao Yuan, 2008. "MDL Mean Function Selection in Semiparametric Kernel Regression Models," Tinbergen Institute Discussion Papers 08-046/4, Tinbergen Institute.
    4. Gupta, Abhimanyu, 2018. "Nonparametric specification testing via the trinity of tests," Journal of Econometrics, Elsevier, vol. 203(1), pages 169-185.
    5. repec:esx:essedp:774 is not listed on IDEAS
    6. Delis, Manthos & Savva, Christos & Theodossiou, Panayiotis, 2020. "A Coronavirus Asset Pricing Model: The Role of Skewness," MPRA Paper 100877, University Library of Munich, Germany.
    7. Fong, Wai Mun, 1997. "Robust beta estimation: Some empirical evidence," Review of Financial Economics, Elsevier, vol. 6(2), pages 167-186.
    8. Luca Bagnato & Valerio Potì & Maria Zoia, 2015. "The role of orthogonal polynomials in adjusting hyperpolic secant and logistic distributions to analyse financial asset returns," Statistical Papers, Springer, vol. 56(4), pages 1205-1234, November.
    9. Masayuki Hirukawa & Mari Sakudo, 2016. "Testing Symmetry of Unknown Densities via Smoothing with the Generalized Gamma Kernels," Econometrics, MDPI, vol. 4(2), pages 1-27, June.
    10. Asok K. Nanda & Shovan Chowdhury, 2021. "Shannon's Entropy and Its Generalisations Towards Statistical Inference in Last Seven Decades," International Statistical Review, International Statistical Institute, vol. 89(1), pages 167-185, April.
    11. James B. McDonald & Daniel B. Walton & Bryan Chia, 2020. "Distributional Assumptions and the Estimation of Contingent Valuation Models," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 431-460, August.
    12. Marcelo Fernandes & Eduardo Mendes & Olivier Scaillet, 2015. "Testing for symmetry and conditional symmetry using asymmetric kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 649-671, August.
    13. Peter M Robinson, 2009. "Developments in the Analysis of Spatial Data," STICERD - Econometrics Paper Series 531, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    14. Haoying Wang, 2018. "Pricing used books on Amazon.com: a spatial approach to price dispersion," Spatial Economic Analysis, Taylor & Francis Journals, vol. 13(1), pages 99-117, January.
    15. Yiguo Sun & Thanasis Stengos, 2008. "The absolute health income hypothesis revisited: a semiparametric quantile regression approach," Empirical Economics, Springer, vol. 35(2), pages 395-412, September.
    16. Delis, Manthos D. & Savva, Christos S. & Theodossiou, Panayiotis, 2021. "The impact of the coronavirus crisis on the market price of risk," Journal of Financial Stability, Elsevier, vol. 53(C).
    17. Tao Chen & Gautam Tripathi, 2013. "Testing conditional symmetry without smoothing," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 273-313, June.
    18. Lee, Jungyoon & Robinson, Peter M., 2020. "Adaptive inference on pure spatial models," Journal of Econometrics, Elsevier, vol. 216(2), pages 375-393.
    19. Arnab Maity & Michael Sherman, 2008. "On adaptive linear regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(12), pages 1409-1422.
    20. De Gooijer, Jan G. & Reichardt, Hugo, 2021. "A multi-step kernel–based regression estimator that adapts to error distributions of unknown form," LSE Research Online Documents on Economics 115083, London School of Economics and Political Science, LSE Library.
    21. Ximing Wu & Thanasis Stengos, 2005. "Partially adaptive estimation via the maximum entropy densities," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 352-366, December.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:34:y:2007:i:4:p:841-869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.