A nonparametric regression estimator that adapts to error distribution of unknown form
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Linton, Oliver & Xiao, Zhijie, 2007. "A Nonparametric Regression Estimator That Adapts To Error Distribution Of Unknown Form," Econometric Theory, Cambridge University Press, vol. 23(3), pages 371-413, June.
- Oliver Linton & Zhijie Xiao, 2001. "A Nonparametric Regression Estimator that Adapts to Error Distribution of Unknown Form," STICERD - Econometrics Paper Series 419, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Linton, Oliver & Xiao, Zhijie, 2001. "A nonparametric regression estimator that adapts to error distribution of unknown form," LSE Research Online Documents on Economics 2120, London School of Economics and Political Science, LSE Library.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Dong, 2010. "Modeling epigenetic modifications under multiple treatment conditions," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1179-1189, April.
- Zhang, Xibin & King, Maxwell L. & Shang, Han Lin, 2014.
"A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density,"
Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 218-234.
- Xibin Zhang & Maxwell L. King & Han Lin Shang, 2013. "A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density," Monash Econometrics and Business Statistics Working Papers 20/13, Monash University, Department of Econometrics and Business Statistics.
- McCloud, Nadine & Parmeter, Christopher F., 2020. "Determining the Number of Effective Parameters in Kernel Density Estimation," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
- Moradi Rekabdarkolaee, Hossein & Wang, Qin, 2017. "Variable selection through adaptive MAVE," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 44-51.
- Xibin Zhang & Maxwell L. King & Han Lin Shang, 2011. "Bayesian estimation of bandwidths for a nonparametric regression model with a flexible error density," Monash Econometrics and Business Statistics Working Papers 10/11, Monash University, Department of Econometrics and Business Statistics.
- Chen, Yixin & Wang, Qin & Yao, Weixin, 2015. "Adaptive estimation for varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 17-31.
- Chaouch, Mohamed, 2019. "Volatility estimation in a nonlinear heteroscedastic functional regression model with martingale difference errors," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 129-148.
- Linton, Oliver & Xiao, Zhijie, 2019.
"Efficient estimation of nonparametric regression in the presence of dynamic heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 213(2), pages 608-631.
- Linton, O. & Xiao, Z., 2019. "Efficient Estimation of Nonparametric Regression in The Presence of Dynamic Heteroskedasticity," Cambridge Working Papers in Economics 1907, Faculty of Economics, University of Cambridge.
- Wang, Qin & Yao, Weixin, 2012. "An adaptive estimation of MAVE," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 88-100, February.
- Yao, Weixin, 2013. "A note on EM algorithm for mixture models," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 519-526.
- De Gooijer, Jan G. & Reichardt, Hugo, 2021. "A multi-step kernel–based regression estimator that adapts to error distributions of unknown form," LSE Research Online Documents on Economics 115083, London School of Economics and Political Science, LSE Library.
More about this item
Keywords
Adaptive Estimation; Asymptotic Expansions; Efficiency; Kernel; Local Likelihood Estimation; Nonparametrie Regression;All these keywords.
JEL classification:
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2001-09-10 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:200133. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sfhubde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.