IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb373/200133.html
   My bibliography  Save this paper

A nonparametric regression estimator that adapts to error distribution of unknown form

Author

Listed:
  • Linton, Oliver Bruce
  • Xiao, Zhijie

Abstract

We propose a new estimator for nonparametric regression based on local likelihood estimation using an estimated error score function obtained from the residuals of a preliminary nonparametric regression. We show that our estimator is asymptotically equivalent to the infeasible local maximum likelihood estimator [Staniswalis (1989)], and hence improves on standard kernel estimators when the error distribution is not normal. We investigate the finite sample performance of our procedure on simulated data.

Suggested Citation

  • Linton, Oliver Bruce & Xiao, Zhijie, 2001. "A nonparametric regression estimator that adapts to error distribution of unknown form," SFB 373 Discussion Papers 2001,33, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:200133
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/62744/1/724886826.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Dong, 2010. "Modeling epigenetic modifications under multiple treatment conditions," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1179-1189, April.
    2. Linton, Oliver & Xiao, Zhijie, 2019. "Efficient estimation of nonparametric regression in the presence of dynamic heteroskedasticity," Journal of Econometrics, Elsevier, vol. 213(2), pages 608-631.
    3. Moradi Rekabdarkolaee, Hossein & Wang, Qin, 2017. "Variable selection through adaptive MAVE," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 44-51.
    4. Zhang, Xibin & King, Maxwell L. & Shang, Han Lin, 2014. "A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 218-234.
    5. Wang, Qin & Yao, Weixin, 2012. "An adaptive estimation of MAVE," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 88-100, February.
    6. Yao, Weixin, 2013. "A note on EM algorithm for mixture models," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 519-526.
    7. McCloud, Nadine & Parmeter, Christopher F., 2020. "Determining the Number of Effective Parameters in Kernel Density Estimation," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
    8. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2011. "Bayesian estimation of bandwidths for a nonparametric regression model with a flexible error density," Monash Econometrics and Business Statistics Working Papers 10/11, Monash University, Department of Econometrics and Business Statistics.
    9. Chen, Yixin & Wang, Qin & Yao, Weixin, 2015. "Adaptive estimation for varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 17-31.
    10. Chaouch, Mohamed, 2019. "Volatility estimation in a nonlinear heteroscedastic functional regression model with martingale difference errors," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 129-148.
    11. De Gooijer, Jan G. & Reichardt, Hugo, 2021. "A multi-step kernel–based regression estimator that adapts to error distributions of unknown form," LSE Research Online Documents on Economics 115083, London School of Economics and Political Science, LSE Library.

    More about this item

    Keywords

    Adaptive Estimation; Asymptotic Expansions; Efficiency; Kernel; Local Likelihood Estimation; Nonparametrie Regression;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:200133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.