A fast algorithm for computing distance correlation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2019.01.016
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xiaobo Guo & Ye Zhang & Wenhao Hu & Haizhu Tan & Xueqin Wang, 2014. "Inferring Nonlinear Gene Regulatory Networks from Gene Expression Data Based on Distance Correlation," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-7, February.
- Zhou Zhou, 2012. "Measuring nonlinear dependence in time‐series, a distance correlation approach," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(3), pages 438-457, May.
- Runze Li & Wei Zhong & Liping Zhu, 2012. "Feature Screening via Distance Correlation Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1129-1139, September.
- Niklas Pfister & Peter Bühlmann & Bernhard Schölkopf & Jonas Peters, 2018. "Kernel‐based tests for joint independence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(1), pages 5-31, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Altarturi, Hamza H.M. & Saadoon, Muntadher & Anuar, Nor Badrul, 2020. "Cyber parental control: A bibliometric study," Children and Youth Services Review, Elsevier, vol. 116(C).
- Hongjian Shi & Marc Hallin & Mathias Drton & Fang Han, 2020. "Rate-Optimality of Consistent Distribution-Free Tests of Independence Based on Center-Outward Ranks and Signs," Working Papers ECARES 2020-23, ULB -- Universite Libre de Bruxelles.
- Borgonovo, Emanuele & Ghidini, Valentina & Hahn, Roman & Plischke, Elmar, 2023. "Explaining classifiers with measures of statistical association," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Wei & Gao, Wei & Ng, Hon Keung Tony, 2023. "Multivariate tests of independence based on a new class of measures of independence in Reproducing Kernel Hilbert Space," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
- Cencheng Shen & Joshua T. Vogelstein, 2021. "The exact equivalence of distance and kernel methods in hypothesis testing," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 385-403, September.
- Guochang Wang & Wai Keung Li & Ke Zhu, 2018. "New HSIC-based tests for independence between two stationary multivariate time series," Papers 1804.09866, arXiv.org.
- Yanzhu Hu & Huiyang Zhao & Xinbo Ai, 2016. "Inferring Weighted Directed Association Network from Multivariate Time Series with a Synthetic Method of Partial Symbolic Transfer Entropy Spectrum and Granger Causality," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-25, November.
- Wan, Phyllis & Davis, Richard A., 2022. "Goodness-of-fit testing for time series models via distance covariance," Journal of Econometrics, Elsevier, vol. 227(1), pages 4-24.
- Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
- Hung Hung & Su‐Yun Huang, 2019. "Sufficient dimension reduction via random‐partitions for the large‐p‐small‐n problem," Biometrics, The International Biometric Society, vol. 75(1), pages 245-255, March.
- Loann David Denis Desboulets, 2018.
"A Review on Variable Selection in Regression Analysis,"
Econometrics, MDPI, vol. 6(4), pages 1-27, November.
- Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Post-Print hal-01954386, HAL.
- Dominic Edelmann & Tobias Terzer & Donald Richards, 2021. "A Basic Treatment of the Distance Covariance," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 12-25, May.
- Zhang, Jing & Wang, Qihua & Kang, Jian, 2020. "Feature screening under missing indicator imputation with non-ignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
- Zhang, Qingyang, 2019. "Independence test for large sparse contingency tables based on distance correlation," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 17-22.
- Lu, Jun & Lin, Lu, 2018. "Feature screening for multi-response varying coefficient models with ultrahigh dimensional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 242-254.
- Chu, Ba, 2023. "A distance-based test of independence between two multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
- Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
- Xiaochao Xia & Hao Ming, 2022. "A Flexibly Conditional Screening Approach via a Nonparametric Quantile Partial Correlation," Mathematics, MDPI, vol. 10(24), pages 1-32, December.
- Zhao, Bangxin & Liu, Xin & He, Wenqing & Yi, Grace Y., 2021. "Dynamic tilted current correlation for high dimensional variable screening," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
- Qingyang Zhang & Yuchun Du, 2019. "Model-free feature screening for categorical outcomes: Nonlinear effect detection and false discovery rate control," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-17, May.
- Fan, Jinlin & Zhang, Yaowu & Zhu, Liping, 2022. "Independence tests in the presence of measurement errors: An invariance law," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Liu, Jingyuan & Sun, Ao & Ke, Yuan, 2024. "A generalized knockoff procedure for FDR control in structural change detection," Journal of Econometrics, Elsevier, vol. 239(2).
- Li, Lu & Ke, Chenlu & Yin, Xiangrong & Yu, Zhou, 2023. "Generalized martingale difference divergence: Detecting conditional mean independence with applications in variable screening," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
More about this item
Keywords
Distance correlation; Dependency measure; Fast algorithm; Merge sort;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:135:y:2019:i:c:p:15-24. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.