Cluster point processes and Poisson thinning INARMA
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- A. Alzaid & M. Al‐Osh, 1988. "First‐Order Integer‐Valued Autoregressive (INAR (1)) Process: Distributional and Regression Properties," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 42(1), pages 53-61, March.
- Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
- Angelos Dassios & Hongbiao Zhao, 2017. "Efficient Simulation of Clustering Jumps with CIR Intensity," Operations Research, INFORMS, vol. 65(6), pages 1494-1515, December.
- Bacry, E. & Delattre, S. & Hoffmann, M. & Muzy, J.F., 2013. "Some limit theorems for Hawkes processes and application to financial statistics," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2475-2499.
- Dassios, Angelos & Zhao, Hongbiao, 2017. "Efficient simulation of clustering jumps with CIR intensity," LSE Research Online Documents on Economics 74205, London School of Economics and Political Science, LSE Library.
- Bowsher, Clive G., 2007.
"Modelling security market events in continuous time: Intensity based, multivariate point process models,"
Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
- Clive Bowsher, 2002. "Modelling Security Market Events in Continuous Time: Intensity based, Multivariate Point Process Models," Economics Papers 2002-W22, Economics Group, Nuffield College, University of Oxford.
- Clive G. Bowsher, 2005. "Modelling Security Market Events in Continuous Time: Intensity Based, Multivariate Point Process Models," Economics Papers 2005-W26, Economics Group, Nuffield College, University of Oxford.
- Clive G. Bowsher, 2003. "Modelling Security Market Events in Continuous Time: Intensity Based, Multivariate Point Process Models," Economics Papers 2003-W03, Economics Group, Nuffield College, University of Oxford.
- E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013.
"Modelling microstructure noise with mutually exciting point processes,"
Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
- E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2011. "Modeling microstructure noise with mutually exciting point processes," Papers 1101.3422, arXiv.org.
- Mohler, G. O. & Short, M. B. & Brantingham, P. J. & Schoenberg, F. P. & Tita, G. E., 2011. "Self-Exciting Point Process Modeling of Crime," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 100-108.
- Large, Jeremy, 2007. "Measuring the resiliency of an electronic limit order book," Journal of Financial Markets, Elsevier, vol. 10(1), pages 1-25, February.
- Dassios, Angelos & Jang, Jiwook, 2003. "Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity," LSE Research Online Documents on Economics 2849, London School of Economics and Political Science, LSE Library.
- P. A. Jacobs & P. A. W. Lewis, 1983. "Stationary Discrete Autoregressive‐Moving Average Time Series Generated By Mixtures," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(1), pages 19-36, January.
- Dassios, Angelos & Zhao, Hongbiao, 2017. "A generalised contagion process with an application to credit risk," LSE Research Online Documents on Economics 68558, London School of Economics and Political Science, LSE Library.
- Du Jin‐Guan & Li Yuan, 1991. "THE INTEGER‐VALUED AUTOREGRESSIVE (INAR(p)) MODEL," Journal of Time Series Analysis, Wiley Blackwell, vol. 12(2), pages 129-142, March.
- Robert A. Jarrow & Fan Yu, 2008.
"Counterparty Risk and the Pricing of Defaultable Securities,"
World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 20, pages 481-515,
World Scientific Publishing Co. Pte. Ltd..
- Robert A. Jarrow & Fan Yu, 2001. "Counterparty Risk and the Pricing of Defaultable Securities," Journal of Finance, American Finance Association, vol. 56(5), pages 1765-1799, October.
- Matthias Kirchner, 2017. "An estimation procedure for the Hawkes process," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 571-595, April.
- Angelos Dassios & Hongbiao Zhao, 2017. "A Generalized Contagion Process With An Application To Credit Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-33, February.
- Kurt Brännäs & Andreia Hall, 2001.
"Estimation in integer‐valued moving average models,"
Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 17(3), pages 277-291, July.
- Brännäs, Kurt & Hall, Andreia, 1998. "Estimation in integer - valued moving average models," Umeå Economic Studies 477, Umeå University, Department of Economics.
- Emmanuel Bacry & Sylvain Delattre & Marc Hoffmann & Jean-François Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Post-Print hal-01313995, HAL.
- Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015.
"Modeling financial contagion using mutually exciting jump processes,"
Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
- Yacine Aït-Sahalia & Julio Cacho-Diaz & Roger J.A. Laeven, 2010. "Modeling Financial Contagion Using Mutually Exciting Jump Processes," NBER Working Papers 15850, National Bureau of Economic Research, Inc.
- M. A. Al‐Osh & A. A. Alzaid, 1987. "First‐Order Integer‐Valued Autoregressive (Inar(1)) Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(3), pages 261-275, May.
- Emmanuel Bacry & Sylvain Delattre & Marc Hoffmann & Jean-François Muzy, 2013. "Some limit theorems for Hawkes processes and application to financial statistics," Post-Print hal-01313994, HAL.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Zezhun & Dassios, Angelos & Kuan, Valerie & Lim, Jia Wei & Qu, Yan & Surya, Budhi & Zhao, Hongbiao, 2021. "A two-phase dynamic contagion model for COVID-19," LSE Research Online Documents on Economics 105064, London School of Economics and Political Science, LSE Library.
- Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2019. "A generalised CIR process with externally-exciting and self-exciting jumps and its applications in insurance and finance," LSE Research Online Documents on Economics 102043, London School of Economics and Political Science, LSE Library.
- Angelos Dassios & Hongbiao Zhao, 2017. "A Generalized Contagion Process With An Application To Credit Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-33, February.
- El Euch Omar & Fukasawa Masaaki & Rosenbaum Mathieu, 2016. "The microstructural foundations of leverage effect and rough volatility," Papers 1609.05177, arXiv.org.
- Dassios, Angelos & Zhao, Hongbiao, 2017. "A generalised contagion process with an application to credit risk," LSE Research Online Documents on Economics 68558, London School of Economics and Political Science, LSE Library.
- Thibault Jaisson, 2015. "Market impact as anticipation of the order flow imbalance," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1123-1135, July.
- Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2017. "Hybrid marked point processes: characterisation, existence and uniqueness," Papers 1707.06970, arXiv.org, revised Oct 2018.
- Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
- Thibault Jaisson & Mathieu Rosenbaum, 2015. "Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes," Papers 1504.03100, arXiv.org.
- Da Fonseca, José & Malevergne, Yannick, 2021.
"A simple microstructure model based on the Cox-BESQ process with application to optimal execution policy,"
Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
- José da Fonseca & Yannick Malevergne, 2021. "A simple microstructure model based on the Cox-BESQ process with application to optimal execution policy," Post-Print halshs-03590382, HAL.
- Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
- Anatoliy Swishchuk & Aiden Huffman, 2018. "General Compound Hawkes Processes in Limit Order Books," Papers 1812.02298, arXiv.org.
- José Da Fonseca & Riadh Zaatour, 2017. "Correlation and Lead–Lag Relationships in a Hawkes Microstructure Model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(3), pages 260-285, March.
- Emmanuel Bacry & Thibault Jaisson & Jean-Francois Muzy, 2014. "Estimation of slowly decreasing Hawkes kernels: Application to high frequency order book modelling," Papers 1412.7096, arXiv.org.
- Maxime Morariu-Patrichi & Mikko Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," CREATES Research Papers 2018-26, Department of Economics and Business Economics, Aarhus University.
- Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," Papers 1809.08060, arXiv.org, revised Sep 2021.
- Dassios, Angelos & Zhao, Hongbiao, 2017. "Efficient simulation of clustering jumps with CIR intensity," LSE Research Online Documents on Economics 74205, London School of Economics and Political Science, LSE Library.
- Angelos Dassios & Hongbiao Zhao, 2017. "Efficient Simulation of Clustering Jumps with CIR Intensity," Operations Research, INFORMS, vol. 65(6), pages 1494-1515, December.
- Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
- Huang, Lorick & Khabou, Mahmoud, 2023. "Nonlinear Poisson autoregression and nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 201-241.
More about this item
Keywords
Stochastic intensity model; dynamic contagion process; Integer-valued time series; Poisson thinning;All these keywords.
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BAN-2022-03-21 (Banking)
- NEP-ECM-2022-03-21 (Econometrics)
- NEP-ORE-2022-03-21 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:113652. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.