IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i9p5636-5694.html
   My bibliography  Save this article

Statistical inference for a partially observed interacting system of Hawkes processes

Author

Listed:
  • Liu, Chenguang

Abstract

We observe the actions of a K sub-sample of N individuals up to time t for some large K≤N. We model the relationships of individuals by i.i.d. Bernoulli(p)-random variables, where p∈(0,1] is an unknown parameter. The rate of action of each individual depends on some unknown parameter μ>0 and on the sum of some function ϕ of the ages of the actions of the individuals which influence him. The function ϕ is unknown but we assume it rapidly decays. The aim of this paper is to estimate the parameter p asymptotically as N→∞, K→∞, and t→∞. Let mt be the average number of actions per individual up to time t. In the subcritical case, where mt increases linearly, we build an estimator of p with the rate of convergence 1K+NmtK+NKmt. In the supercritical case, where mt increases exponentially fast, we build an estimator of p with the rate of convergence 1K+NmtK.

Suggested Citation

  • Liu, Chenguang, 2020. "Statistical inference for a partially observed interacting system of Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5636-5694.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:9:p:5636-5694
    DOI: 10.1016/j.spa.2020.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414919301048
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jakob Gulddahl Rasmussen, 2013. "Bayesian Inference for Hawkes Processes," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 623-642, September.
    2. Bacry, E. & Delattre, S. & Hoffmann, M. & Muzy, J.F., 2013. "Some limit theorems for Hawkes processes and application to financial statistics," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2475-2499.
    3. Mohler, G. O. & Short, M. B. & Brantingham, P. J. & Schoenberg, F. P. & Tita, G. E., 2011. "Self-Exciting Point Process Modeling of Crime," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 100-108.
    4. Luc, BAUWENS & Nikolaus, HAUTSCH, 2006. "Modelling Financial High Frequency Data Using Point Processes," Discussion Papers (ECON - Département des Sciences Economiques) 2006039, Université catholique de Louvain, Département des Sciences Economiques.
    5. Emmanuel Bacry & Sylvain Delattre & Marc Hoffmann & Jean-François Muzy, 2013. "Some limit theorems for Hawkes processes and application to financial statistics," Post-Print hal-01313994, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.
    2. Thibault Jaisson & Mathieu Rosenbaum, 2015. "Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes," Papers 1504.03100, arXiv.org.
    3. Fuentes, Fernanda & Herrera, Rodrigo & Clements, Adam, 2018. "Modeling extreme risks in commodities and commodity currencies," Pacific-Basin Finance Journal, Elsevier, vol. 51(C), pages 108-120.
    4. Anatoliy Swishchuk & Bruno Remillard & Robert Elliott & Jonathan Chavez-Casillas, 2017. "Compound Hawkes Processes in Limit Order Books," Papers 1712.03106, arXiv.org.
    5. Stindl, Tom & Chen, Feng, 2018. "Likelihood based inference for the multivariate renewal Hawkes process," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 131-145.
    6. Roueff, Francois & von Sachs, Rainer & Sansonnet, Laure, 2015. "Time-frequency analysis of locally stationary Hawkes processes," LIDAM Discussion Papers ISBA 2015011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Chen, Zezhun & Dassios, Angelos, 2022. "Cluster point processes and Poisson thinning INARMA," LSE Research Online Documents on Economics 113652, London School of Economics and Political Science, LSE Library.
    8. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    9. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.
    10. Duval, Céline & Luçon, Eric & Pouzat, Christophe, 2022. "Interacting Hawkes processes with multiplicative inhibition," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 180-226.
    11. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    12. Samuel N. Cohen & Robert J. Elliott, 2013. "Filters and smoothers for self-exciting Markov modulated counting processes," Papers 1311.6257, arXiv.org.
    13. Qi Guo & Bruno Remillard & Anatoliy Swishchuk, 2020. "Multivariate General Compound Point Processes in Limit Order Books," Papers 2008.00124, arXiv.org.
    14. Takeuchi, Atsushi, 2019. "Integration by parts formulas for marked Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 229-237.
    15. Emmanuel Bacry & Jean-Fran�ois Muzy, 2014. "Hawkes model for price and trades high-frequency dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1147-1166, July.
    16. Santitissadeekorn, Naratip & Lloyd, David J.B. & Short, Martin B. & Delahaies, Sylvain, 2020. "Approximate filtering of conditional intensity process for Poisson count data: Application to urban crime," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    17. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Post-Print hal-00971369, HAL.
    18. Takaki Hayashi & Yuta Koike, 2016. "Wavelet-based methods for high-frequency lead-lag analysis," Papers 1612.01232, arXiv.org, revised Nov 2018.
    19. El Euch Omar & Fukasawa Masaaki & Rosenbaum Mathieu, 2016. "The microstructural foundations of leverage effect and rough volatility," Papers 1609.05177, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:9:p:5636-5694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.