IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i4d10.1007_s13198-021-01510-3.html
   My bibliography  Save this article

Prediction of future failures in the log-logistic distribution based on hybrid censored data

Author

Listed:
  • Wassim R. Abou Ghaida

    (Qatar University)

  • Ayman Baklizi

    (Qatar University)

Abstract

We consider the prediction of future observations from the log-logistic distribution. The data is assumed hybrid right censored with possible left censoring. Different point predictors were derived. Specifically, we obtained the best unbiased, the conditional median, and the maximum likelihood predictors. Prediction intervals were derived using suitable pivotal quantities and intervals based on the highest density. We conducted a simulation study to compare the point and interval predictors. It is found that the point predictor BUP and the prediction interval HDI have the best overall performance. An illustrative example based on real data is given.

Suggested Citation

  • Wassim R. Abou Ghaida & Ayman Baklizi, 2022. "Prediction of future failures in the log-logistic distribution based on hybrid censored data," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1598-1606, August.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:4:d:10.1007_s13198-021-01510-3
    DOI: 10.1007/s13198-021-01510-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01510-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01510-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kundu, Debasis & Mitra, Debanjan, 2016. "Bayesian inference of Weibull distribution based on left truncated and right censored data," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 38-50.
    2. Sukhdev Singh & Reza Arabi Belaghi & Mehri Noori Asl, 2019. "Estimation and prediction using classical and Bayesian approaches for Burr III model under progressive type-I hybrid censoring," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 746-764, August.
    3. Mohammad Ali Farsi & S. Masood Hosseini, 2019. "Statistical distributions comparison for remaining useful life prediction of components via ANN," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 429-436, June.
    4. Sampa ChauPattnaik & Mitrabinda Ray & Mitali Madhusmita Nayak, 2021. "Component based reliability prediction," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(3), pages 391-406, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xifan Song & Ziyu Xiong & Wenhao Gui, 2022. "Parameter Estimation of Exponentiated Half-Logistic Distribution for Left-Truncated and Right-Censored Data," Mathematics, MDPI, vol. 10(20), pages 1-26, October.
    2. Swapnil K. Gundewar & Prasad V. Kane, 2022. "Rolling element bearing fault diagnosis using supervised learning methods- artificial neural network and discriminant classifier," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2876-2894, December.
    3. Zhiyuan Zuo & Liang Wang & Yuhlong Lio, 2022. "Reliability Estimation for Dependent Left-Truncated and Right-Censored Competing Risks Data with Illustrations," Energies, MDPI, vol. 16(1), pages 1-25, December.
    4. Kundu, Debasis & Mitra, Debanjan & Ganguly, Ayon, 2017. "Analysis of left truncated and right censored competing risks data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 12-26.
    5. Kehui Yao & Jun Zhu & Daniel J. O'Brien & Daniel Walsh, 2023. "Bayesian spatio‐temporal survival analysis for all types of censoring with application to a wildlife disease study," Environmetrics, John Wiley & Sons, Ltd., vol. 34(8), December.
    6. Shuto, Susumu & Amemiya, Takashi, 2022. "Sequential Bayesian inference for Weibull distribution parameters with initial hyperparameter optimization for system reliability estimation," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    7. Ding, Yifei & Jia, Minping & Miao, Qiuhua & Huang, Peng, 2021. "Remaining useful life estimation using deep metric transfer learning for kernel regression," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    8. Neeraj Khera & Shakeb A. Khan & Obaidur Rahman, 2020. "Valve regulated lead acid battery diagnostic system based on infrared thermal imaging and fuzzy algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 614-624, June.
    9. Bahareh Tajiani & Jørn Vatn, 2023. "Adaptive remaining useful life prediction framework with stochastic failure threshold for experimental bearings with different lifetimes under contaminated condition," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1756-1777, October.
    10. Ducros, Florence & Pamphile, Patrick, 2018. "Bayesian estimation of Weibull mixture in heavily censored data setting," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 453-462.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:4:d:10.1007_s13198-021-01510-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.