IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v44y2017i8p1369-1384.html
   My bibliography  Save this article

Estimation on dependent right censoring scheme in an ordinary bivariate geometric distribution

Author

Listed:
  • N. Davarzani
  • L. Golparvar
  • A. Parsian
  • R. Peeters

Abstract

Discrete lifetime data are very common in engineering and medical researches. In many cases the lifetime is censored at a random or predetermined time and we do not know the complete survival time. There are many situations that the lifetime variable could be dependent on the time of censoring. In this paper we propose the dependent right censoring scheme in discrete setup when the lifetime and censoring variables have a bivariate geometric distribution. We obtain the maximum likelihood estimators of the unknown parameters with their risks in closed forms. The Bayes estimators as well as the constrained Bayes estimates of the unknown parameters under the squared error loss function are also obtained. We considered an extension to the case where covariates are present along with the data. Finally we provided a simulation study and an illustrative example with a real data.

Suggested Citation

  • N. Davarzani & L. Golparvar & A. Parsian & R. Peeters, 2017. "Estimation on dependent right censoring scheme in an ordinary bivariate geometric distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(8), pages 1369-1384, June.
  • Handle: RePEc:taf:japsta:v:44:y:2017:i:8:p:1369-1384
    DOI: 10.1080/02664763.2016.1206064
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1206064
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1206064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balakrishnan, N. & Mitra, Debanjan, 2012. "Left truncated and right censored Weibull data and likelihood inference with an illustration," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4011-4025.
    2. Hwang, Yi-Ting & Wang, Chun-chao, 2008. "A goodness of fit test for left-truncated and right-censored data," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2420-2425, October.
    3. K. Muraleedharan Nair & N. Unnikrishnan Nair, 1988. "On characterizing the bivariate exponential and geometric distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 40(2), pages 267-271, June.
    4. Ahmadi, Jafar & Doostparast, Mahdi & Parsian, Ahmad, 2012. "Estimation with left-truncated and right censored data: A comparison study," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1391-1400.
    5. Arnold, Barry C. & Press, S. James, 1983. "Bayesian inference for pareto populations," Journal of Econometrics, Elsevier, vol. 21(3), pages 287-306, April.
    6. Hongyu Jiang & Jason P. Fine & Michael R. Kosorok & Rick Chappell, 2005. "Pseudo Self‐Consistent Estimation of a Copula Model with Informative Censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(1), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Liang & Tripathi, Yogesh Mani & Dey, Sanku & Zhang, Chunfang & Wu, Ke, 2022. "Analysis of dependent left-truncated and right-censored competing risks data with partially observed failure causes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 285-307.
    2. Xifan Song & Ziyu Xiong & Wenhao Gui, 2022. "Parameter Estimation of Exponentiated Half-Logistic Distribution for Left-Truncated and Right-Censored Data," Mathematics, MDPI, vol. 10(20), pages 1-26, October.
    3. Nirei, Makoto & Sushko, Vladyslav, 2011. "Jumps in foreign exchange rates and stochastic unwinding of carry trades," International Review of Economics & Finance, Elsevier, vol. 20(1), pages 110-127, January.
    4. Doostparast, Mohammad & Kolahan, Farhad & Doostparast, Mahdi, 2014. "A reliability-based approach to optimize preventive maintenance scheduling for coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 98-106.
    5. Azeem Ali & Sanku Dey & Haseeb Ur Rehman & Zeeshan Ali, 2019. "On Bayesian reliability estimation of a 1-out-of-k load sharing system model of modified Burr-III distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1052-1081, October.
    6. Amel Abd-El-Monem & Mohamed S. Eliwa & Mahmoud El-Morshedy & Afrah Al-Bossly & Rashad M. EL-Sagheer, 2023. "Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    7. Zhiyuan Zuo & Liang Wang & Yuhlong Lio, 2022. "Reliability Estimation for Dependent Left-Truncated and Right-Censored Competing Risks Data with Illustrations," Energies, MDPI, vol. 16(1), pages 1-25, December.
    8. Kundu, Debasis & Mitra, Debanjan & Ganguly, Ayon, 2017. "Analysis of left truncated and right censored competing risks data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 12-26.
    9. Lajmi Lakhal & Louis-Paul Rivest & Belkacem Abdous, 2008. "Estimating Survival and Association in a Semicompeting Risks Model," Biometrics, The International Biometric Society, vol. 64(1), pages 180-188, March.
    10. Majda Benzidia & Michel Lubrano, 2020. "A Bayesian look at American academic wages: From wage dispersion to wage compression," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 18(2), pages 213-238, June.
    11. Emura, Takeshi & Shiu, Shau-Kai, 2014. "Estimation and model selection for left-truncated and right-censored lifetime data with application to electric power transformers analysis," MPRA Paper 57528, University Library of Munich, Germany.
    12. Farouk Metiri & Halim Zeghdoudi & Abdelali Ezzebsa, 2022. "On the characterisation of X-Lindley distribution by truncated moments. Properties and application," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 32(1), pages 97-109.
    13. Sisi Chen & Fengkai Yang, 2023. "Expectation-Maximization Algorithm for the Weibull Proportional Hazard Model under Current Status Data," Mathematics, MDPI, vol. 11(23), pages 1-23, November.
    14. Jeevanand E. S. & Abdul-Sathar E. I., 2006. "Estimation of Pareto Survival Function in the Presence of Outlying Observations," Stochastics and Quality Control, De Gruyter, vol. 21(2), pages 199-208, January.
    15. Zeinab Amin, 2008. "Bayesian inference for the Pareto lifetime model under progressive censoring with binomial removals," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(11), pages 1203-1217.
    16. Yandan Yang & Hon Keung Tony Ng & Narayanaswamy Balakrishnan, 2019. "Expectation–maximization algorithm for system-based lifetime data with unknown system structure," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 69-98, March.
    17. Gámiz Pérez, M. Luz & Martínez Miranda, María Dolores & Nielsen, Jens Perch, 2013. "Smoothing survival densities in practice," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 368-382.
    18. Kundu, Debasis & Mitra, Debanjan, 2016. "Bayesian inference of Weibull distribution based on left truncated and right censored data," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 38-50.
    19. N. Balakrishnan & M. Doostparast & J. Ahmadi, 2009. "Reconstruction of past records," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(1), pages 89-109, June.
    20. Umesh Singh & Manoj Kumar & Sanjay Kumar Singh, 2014. "Bayesian inference for exponentiated Pareto model with application to bladder cancer remission time," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(3), pages 403-426, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:44:y:2017:i:8:p:1369-1384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.