IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v154y2016icp84-96.html
   My bibliography  Save this article

Statistical inference for imperfect maintenance models with missing data

Author

Listed:
  • Dijoux, Yann
  • Fouladirad, Mitra
  • Nguyen, Dinh Tuan

Abstract

The paper considers complex industrial systems with incomplete maintenance history. A corrective maintenance is performed after the occurrence of a failure and its efficiency is assumed to be imperfect. In maintenance analysis, the databases are not necessarily complete. Specifically, the observations are assumed to be window-censored. This situation arises relatively frequently after the purchase of a second-hand unit or in the absence of maintenance record during the burn-in phase. The joint assessment of the wear-out of the system and the maintenance efficiency is investigated under missing data. A review along with extensions of statistical inference procedures from an observation window are proposed in the case of perfect and minimal repair using the renewal and Poisson theories, respectively. Virtual age models are employed to model imperfect repair. In this framework, new estimation procedures are developed. In particular, maximum likelihood estimation methods are derived for the most classical virtual age models. The benefits of the new estimation procedures are highlighted by numerical simulations and an application to a real data set.

Suggested Citation

  • Dijoux, Yann & Fouladirad, Mitra & Nguyen, Dinh Tuan, 2016. "Statistical inference for imperfect maintenance models with missing data," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 84-96.
  • Handle: RePEc:eee:reensy:v:154:y:2016:i:c:p:84-96
    DOI: 10.1016/j.ress.2016.05.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016300825
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.05.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balakrishnan, N. & Mitra, Debanjan, 2012. "Left truncated and right censored Weibull data and likelihood inference with an illustration," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4011-4025.
    2. Doyen, L., 2012. "Reliability analysis and joint assessment of Brown–Proschan preventive maintenance efficiency and intrinsic wear-out," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4433-4449.
    3. Guo, Haitao & Watson, Simon & Tavner, Peter & Xiang, Jiangping, 2009. "Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1057-1063.
    4. Pham, Hoang & Wang, Hongzhou, 1996. "Imperfect maintenance," European Journal of Operational Research, Elsevier, vol. 94(3), pages 425-438, November.
    5. Constantine, A. G. & Robinson, N. I., 1997. "The Weibull renewal function for moderate to large arguments," Computational Statistics & Data Analysis, Elsevier, vol. 24(1), pages 9-27, March.
    6. Yanxing Zhao & H. Nagaraja, 2011. "Fisher information in window censored renewal process data and its applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(4), pages 791-825, August.
    7. Yu, Jun-Wu & Tian, Guo-Liang & Tang, Man-Lai, 2008. "Statistical inference and prediction for the Weibull process with incomplete observations," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1587-1603, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maxim Finkelstein & Ji Hwan Cha, 2021. "On degradation-based imperfect repair and induced generalized renewal processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 1026-1045, December.
    2. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    3. Beutner, Eric, 2023. "A review of effective age models and associated non- and semiparametric methods," Econometrics and Statistics, Elsevier, vol. 28(C), pages 105-119.
    4. Xu, Hao & Gardoni, Paolo, 2020. "Conditional formulation for the calibration of multi-level random fields with incomplete data," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Wakiru, James M. & Pintelon, Liliane & Muchiri, Peter N. & Chemweno, Peter K., 2019. "A simulation-based optimization approach evaluating maintenance and spare parts demand interaction effects," International Journal of Production Economics, Elsevier, vol. 208(C), pages 329-342.
    6. Brenière, Léa & Doyen, Laurent & Bérenguer, Christophe, 2020. "Virtual age models with time-dependent covariates: A framework for simulation, parametric inference and quality of estimation," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    7. Maxim Finkelstein & Ji Hwan Cha, 2022. "Reducing degradation and age of items in imperfect repair modeling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1058-1081, December.
    8. Liu, Xingheng & Vatn, Jørn & Dijoux, Yann & Toftaker, Håkon, 2020. "Unobserved heterogeneity in stable imperfect repair models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    9. Wakiru, James & Pintelon, Liliane & Muchiri, Peter N. & Chemweno, Peter K., 2021. "Integrated remanufacturing, maintenance and spares policies towards life extension of a multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doyen, L., 2014. "Semi-parametric estimation of Brown–Proschan preventive maintenance effects and intrinsic wear-out," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 206-222.
    2. Peng, Yizhen & Wang, Yu & Zi, YanYang & Tsui, Kwok-Leung & Zhang, Chuhua, 2017. "Dynamic reliability assessment and prediction for repairable systems with interval-censored data," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 301-309.
    3. Remy, Emmanuel & Corset, Franck & Despréaux, Stéphane & Doyen, Laurent & Gaudoin, Olivier, 2013. "An example of integrated approach to technical and economic optimization of maintenance," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 8-19.
    4. Ranjan, Rakesh & Sen, Rijji & Upadhyay, Satyanshu K., 2021. "Bayes analysis of some important lifetime models using MCMC based approaches when the observations are left truncated and right censored," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    5. Xiang, Yisha, 2013. "Joint optimization of X¯ control chart and preventive maintenance policies: A discrete-time Markov chain approach," European Journal of Operational Research, Elsevier, vol. 229(2), pages 382-390.
    6. Zhao, Xiujie & He, Shuguang & Xie, Min, 2018. "Utilizing experimental degradation data for warranty cost optimization under imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 108-119.
    7. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    8. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    9. Guo R. & Ascher H. & Love E., 2001. "Towards Practical and Synthetical Modelling of Repairable Systems," Stochastics and Quality Control, De Gruyter, vol. 16(1), pages 147-182, January.
    10. Raouf, BOUCEKKINE & Blanca, MARTINEZ & Cagri, SAGLAM, 2006. "Capital Maintenance Vs Technology Adopton under Embodied Technical Progress," Discussion Papers (ECON - Département des Sciences Economiques) 2006030, Université catholique de Louvain, Département des Sciences Economiques.
    11. Dewan, Isha & Dijoux, Yann, 2015. "Modelling repairable systems with an early life under competing risks and asymmetric virtual age," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 215-224.
    12. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    13. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    14. Ruey Yeh & Wen Chang & Hui-Chiung Lo, 2010. "Optimal threshold values of age and two-phase maintenance policy for leased equipments using age reduction method," Annals of Operations Research, Springer, vol. 181(1), pages 171-183, December.
    15. Li, Yan-Fu & Zio, Enrico, 2012. "A multi-state model for the reliability assessment of a distributed generation system via universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 28-36.
    16. Zhang, Cai Wen & Zhang, Tieling & Chen, Nan & Jin, Tongdan, 2013. "Reliability modeling and analysis for a novel design of modular converter system of wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 86-94.
    17. Shen, Jingyuan & Cui, Lirong & Ma, Yizhong, 2019. "Availability and optimal maintenance policy for systems degrading in dynamic environments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 133-143.
    18. Xiao, Lei & Zhang, Xinghui & Tang, Junxuan & Zhou, Yaqin, 2020. "Joint optimization of opportunistic maintenance and production scheduling considering batch production mode and varying operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    19. Jackson, Canek & Pascual, Rodrigo, 2008. "Optimal maintenance service contract negotiation with aging equipment," European Journal of Operational Research, Elsevier, vol. 189(2), pages 387-398, September.
    20. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:154:y:2016:i:c:p:84-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.