IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v162y2022ics0960077922006956.html
   My bibliography  Save this article

A novel approach for solving linear and nonlinear time-fractional Schrödinger equations

Author

Listed:
  • Liaqat, Muhammad Imran
  • Akgül, Ali

Abstract

There is significant literature on Schrödinger differential equation (SDE) solutions, where the fractional derivatives are stated in terms of Caputo derivative (CD). There is hardly any work on analytical and numerical SDE solutions involving conformable fractional derivative (CFD). For the reasons stated above, we are required to solve the SDE in the form of CFD. The main goal of this research is to offer a novel combined computational approach by using conformable natural transform (CNT) and the homotopy perturbation method (HPM) for extracting analytical and numerical solutions of the time-fractional conformable Schrödinger equation (TFCSE) with zero and nonzero trapping potential. We call it the conformable natural transform homotopy perturbation method (CNTHPM). The relative, recurrence, and absolute errors of the problems are analyzed to evaluate the efficiency and consistency of the CNTHPM. The error analysis has confirmed the higher degree of accuracy and convergence rates, which indicates the effectiveness and reliability of the suggested method. Furthermore, 2D and 3D graphs compare the exact and approximate solutions. The procedure is quick, precise, and easy to implement, and it yields outstanding results. In addition, numerical results are also compared with other methods such as the differential transform method (DTM), split-step finite difference method (SSFDM), homotopy analysis method (HAM), homotopy perturbation method (HPM), Adomian decomposition method (ADM), and two-dimensional differential transform method (TDDTM). The comparison shows excellent agreement with these methods, which means that CNTHPM is a suitable alternative tool to the methods based on CD for the solutions of the time-fractional SDE. Moreover, we can conclude that the CFD is a suitable alternative to the CD in the modeling of time-fractional SDE. The Banach fixed point theory was also used to test the uniqueness of the solution, convergence, and error analysis.

Suggested Citation

  • Liaqat, Muhammad Imran & Akgül, Ali, 2022. "A novel approach for solving linear and nonlinear time-fractional Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922006956
    DOI: 10.1016/j.chaos.2022.112487
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922006956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muhammad Imran Liaqat & Adnan Khan & Md. Ashraful Alam & M. K. Pandit & Sina Etemad & Shahram Rezapour & Aida Mustapha, 2022. "Approximate and Closed-Form Solutions of Newell-Whitehead-Segel Equations via Modified Conformable Shehu Transform Decomposition Method," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-14, April.
    2. Naveed Anjum & Chun-Hui He & Ji-Huan He, 2021. "Two-Scale Fractal Theory For The Population Dynamics," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(07), pages 1-10, November.
    3. Ravi Kanth, A.S.V. & Aruna, K., 2009. "Two-dimensional differential transform method for solving linear and non-linear Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2277-2281.
    4. Adnan Khan & Muhammad Imran Liaqat & Muhammad Younis & Ashraful Alam & Fairouz Tchier, 2021. "Approximate and Exact Solutions to Fractional Order Cauchy Reaction-Diffusion Equations by New Combine Techniques," Journal of Mathematics, Hindawi, vol. 2021, pages 1-12, December.
    5. Fethi Bin Muhammed Belgacem & Ahmed Abdullatif Karaballi, 2006. "Sumudu transform fundamental properties investigations and applications," International Journal of Stochastic Analysis, Hindawi, vol. 2006, pages 1-23, May.
    6. Shehu Maitama, 2016. "A Hybrid Natural Transform Homotopy Perturbation Method for Solving Fractional Partial Differential Equations," International Journal of Differential Equations, Hindawi, vol. 2016, pages 1-7, September.
    7. Owyed, Saud & Abdou, M.A. & Abdel-Aty, Abdel-Haleem & Alharbi, W. & Nekhili, Ramzi, 2020. "Numerical and approximate solutions for coupled time fractional nonlinear evolutions equations via reduced differential transform method," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    8. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    9. Lokenath Debnath, 2003. "Recent applications of fractional calculus to science and engineering," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2003, pages 1-30, January.
    10. Liaqat, Muhammad Imran & Khan, Adnan & Akgül, Ali, 2022. "Adaptation on power series method with conformable operator for solving fractional order systems of nonlinear partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    11. Amir Ali & Zamin Gul & Wajahat Ali Khan & Saeed Ahmad & Salman Zeb, 2021. "Investigation Of Fractional Order Sine-Gordon Equation Using Laplace Adomian Decomposition Method," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(05), pages 1-10, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peiyao Wang & Shangwen Peng & Yihao Cao & Rongpei Zhang, 2024. "The Conservative and Efficient Numerical Method of 2-D and 3-D Fractional Nonlinear Schrödinger Equation Using Fast Cosine Transform," Mathematics, MDPI, vol. 12(7), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mamta Kapoor & Nehad Ali Shah & Salman Saleem & Wajaree Weera, 2022. "An Analytical Approach for Fractional Hyperbolic Telegraph Equation Using Shehu Transform in One, Two and Three Dimensions," Mathematics, MDPI, vol. 10(12), pages 1-26, June.
    2. Coronel-Escamilla, Antonio & Gomez-Aguilar, Jose Francisco & Stamova, Ivanka & Santamaria, Fidel, 2020. "Fractional order controllers increase the robustness of closed-loop deep brain stimulation systems," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Kritika, & Agarwal, Ritu & Purohit, Sunil Dutt, 2020. "Mathematical model for anomalous subdiffusion using comformable operator," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Musrrat Ali & Hemant Gandhi & Amit Tomar & Dimple Singh, 2023. "Similarity Solution for a System of Fractional-Order Coupled Nonlinear Hirota Equations with Conservation Laws," Mathematics, MDPI, vol. 11(11), pages 1-14, May.
    5. Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Xing, Sheng Yan & Lu, Jun Guo, 2009. "Robust stability and stabilization of fractional-order linear systems with nonlinear uncertain parameters: An LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1163-1169.
    7. Ya Qin & Adnan Khan & Izaz Ali & Maysaa Al Qurashi & Hassan Khan & Rasool Shah & Dumitru Baleanu, 2020. "An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems," Energies, MDPI, vol. 13(11), pages 1-14, May.
    8. Hussain, Ghulam & Khan, Amir & Zahri, Mostafa & Zaman, Gul, 2022. "Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    9. Alam, Mehboob & Zada, Akbar, 2022. "Implementation of q-calculus on q-integro-differential equation involving anti-periodic boundary conditions with three criteria," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    10. Yahya Almalki & Waqar Afzal, 2023. "Some New Estimates of Hermite–Hadamard Inequalities for Harmonical cr - h -Convex Functions via Generalized Fractional Integral Operator on Set-Valued Mappings," Mathematics, MDPI, vol. 11(19), pages 1-21, September.
    11. Boukhouima, Adnane & Hattaf, Khalid & Lotfi, El Mehdi & Mahrouf, Marouane & Torres, Delfim F.M. & Yousfi, Noura, 2020. "Lyapunov functions for fractional-order systems in biology: Methods and applications," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    12. Hari Mohan Srivastava & Khaled M. Saad, 2020. "A Comparative Study of the Fractional-Order Clock Chemical Model," Mathematics, MDPI, vol. 8(9), pages 1-14, August.
    13. Ghanbari, Behzad, 2021. "On detecting chaos in a prey-predator model with prey’s counter-attack on juvenile predators," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    14. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    15. Ravi Kanth, A.S.V. & Devi, Sangeeta, 2021. "A practical numerical approach to solve a fractional Lotka–Volterra population model with non-singular and singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    16. Li, Peiluan & Gao, Rong & Xu, Changjin & Ahmad, Shabir & Li, Ying & Akgül, Ali, 2023. "Bifurcation behavior and PDγ control mechanism of a fractional delayed genetic regulatory model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    17. Jehad Alzabut & Weerawat Sudsutad & Zeynep Kayar & Hamid Baghani, 2019. "A New Gronwall–Bellman Inequality in Frame of Generalized Proportional Fractional Derivative," Mathematics, MDPI, vol. 7(8), pages 1-15, August.
    18. Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    19. Iyiola, O.S. & Tasbozan, O. & Kurt, A. & Çenesiz, Y., 2017. "On the analytical solutions of the system of conformable time-fractional Robertson equations with 1-D diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 1-7.
    20. Alina Alb Lupaş, 2021. "Applications of the Fractional Calculus in Fuzzy Differential Subordinations and Superordinations," Mathematics, MDPI, vol. 9(20), pages 1-10, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922006956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.