IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v145y2021ics0960077921001442.html
   My bibliography  Save this article

A practical numerical approach to solve a fractional Lotka–Volterra population model with non-singular and singular kernels

Author

Listed:
  • Ravi Kanth, A.S.V.
  • Devi, Sangeeta

Abstract

This paper investigate the dynamical behavior of the fractional Lotka–Volterra dynamic model. The proposed model is examined through fractional derivatives with singular and non-singular kernels. The Newton polynomial-based computational scheme is used to solve the Lotka–Volterrapopulation model with non-local operators. An error estimation of the proposed method is given. The findings of the simulation reveal that the model provided on the basis of three separate fractional operators displays distinct asymptomatic actions that do not exist within the modeling of the integer-order. Finally, computational results are presented to check the accuracy of the scheme, we compared the results with the existing methods.

Suggested Citation

  • Ravi Kanth, A.S.V. & Devi, Sangeeta, 2021. "A practical numerical approach to solve a fractional Lotka–Volterra population model with non-singular and singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001442
    DOI: 10.1016/j.chaos.2021.110792
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921001442
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Sunil & Kumar, Ranbir & Cattani, Carlo & Samet, Bessem, 2020. "Chaotic behaviour of fractional predator-prey dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    2. Imran, M.A. & Aleem, Maryam & Riaz, M.B. & Ali, Rizwan & Khan, Ilyas, 2019. "A comprehensive report on convective flow of fractional (ABC) and (CF) MHD viscous fluid subject to generalized boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 274-289.
    3. Owolabi, Kolade M. & Atangana, Abdon, 2019. "Mathematical analysis and computational experiments for an epidemic system with nonlocal and nonsingular derivative," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 41-49.
    4. Kumar, Sunil & Kumar, Ajay & Samet, Bessem & Gómez-Aguilar, J.F. & Osman, M.S., 2020. "A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Lokenath Debnath, 2003. "Recent applications of fractional calculus to science and engineering," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2003, pages 1-30, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Şuayip Yüzbaşı & Gamze Yıldırım, 2023. "A Pell–Lucas Collocation Approach for an SIR Model on the Spread of the Novel Coronavirus (SARS CoV-2) Pandemic: The Case of Turkey," Mathematics, MDPI, vol. 11(3), pages 1-22, January.
    2. Izadi, Mohammad & Yüzbaşı, Şuayip & Adel, Waleed, 2022. "Accurate and efficient matrix techniques for solving the fractional Lotka–Volterra population model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad, Shabir & Ullah, Aman & Akgül, Ali, 2021. "Investigating the complex behaviour of multi-scroll chaotic system with Caputo fractal-fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Coronel-Escamilla, Antonio & Gomez-Aguilar, Jose Francisco & Stamova, Ivanka & Santamaria, Fidel, 2020. "Fractional order controllers increase the robustness of closed-loop deep brain stimulation systems," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Musrrat Ali & Hemant Gandhi & Amit Tomar & Dimple Singh, 2023. "Similarity Solution for a System of Fractional-Order Coupled Nonlinear Hirota Equations with Conservation Laws," Mathematics, MDPI, vol. 11(11), pages 1-14, May.
    4. Yadav, Ram Prasad & Renu Verma,, 2020. "A numerical simulation of fractional order mathematical modeling of COVID-19 disease in case of Wuhan China," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. H. Mesgarani & Y. Esmaeelzade Aghdam & A. Beiranvand & J. F. Gómez-Aguilar, 2024. "A Novel Approach to Fuzzy Based Efficiency Assessment of a Financial System," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1609-1626, April.
    6. Bukhari, Ayaz Hussain & Raja, Muhammad Asif Zahoor & Shoaib, Muhammad & Kiani, Adiqa Kausar, 2022. "Fractional order Lorenz based physics informed SARFIMA-NARX model to monitor and mitigate megacities air pollution," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    7. González-Calderón, Alfredo & Vivas-Cruz, Luis X. & Taneco-Hernández, M.A. & Gómez-Aguilar, J.F., 2023. "Assessment of the performance of the hyperbolic-NILT method to solve fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 375-390.
    8. Xing, Sheng Yan & Lu, Jun Guo, 2009. "Robust stability and stabilization of fractional-order linear systems with nonlinear uncertain parameters: An LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1163-1169.
    9. Alquran, Marwan & Yousef, Feras & Alquran, Farah & Sulaiman, Tukur A. & Yusuf, Abdullahi, 2021. "Dual-wave solutions for the quadratic–cubic conformable-Caputo time-fractional Klein–Fock–Gordon equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 62-76.
    10. Ngounou, A.M. & Mba Feulefack, S.C. & Anague Tabejieu, L.M. & Nana Nbendjo, B.R., 2022. "Design, analysis and horseshoes chaos control on tension leg platform system with fractional nonlinear viscoelastic tendon force under regular sea wave excitation," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    11. Ariza-Hernandez, Francisco J. & Martin-Alvarez, Luis M. & Arciga-Alejandre, Martin P. & Sanchez-Ortiz, Jorge, 2021. "Bayesian inversion for a fractional Lotka-Volterra model: An application of Canadian lynx vs. snowshoe hares," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    12. André Liemert & Alwin Kienle, 2016. "Fractional Schrödinger Equation in the Presence of the Linear Potential," Mathematics, MDPI, vol. 4(2), pages 1-14, May.
    13. Aitzhanov, S.E. & Kusherbayeva, U.R. & Bekenayeva, K.S., 2022. "Solvability of pseudoparabolic equation with Caputo fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    14. Bhuvaneswari Sambandham & Aghalaya S. Vatsala, 2015. "Basic Results for Sequential Caputo Fractional Differential Equations," Mathematics, MDPI, vol. 3(1), pages 1-16, March.
    15. Wang, Wanting & Khan, Muhammad Altaf & Fatmawati, & Kumam, P. & Thounthong, P., 2019. "A comparison study of bank data in fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 369-384.
    16. Liao, Xiaozhong & Ran, Manjie & Yu, Donghui & Lin, Da & Yang, Ruocen, 2022. "Chaos analysis of Buck converter with non-singular fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    17. Mishra, A.M. & Purohit, S.D. & Owolabi, K.M. & Sharma, Y.D., 2020. "A nonlinear epidemiological model considering asymptotic and quarantine classes for SARS CoV-2 virus," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    18. Rihan, F.A. & Rajivganthi, C, 2020. "Dynamics of fractional-order delay differential model of prey-predator system with Holling-type III and infection among predators," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    19. Gupta, Sandipan & Ranta, Shivani, 2022. "Legendre wavelet based numerical approach for solving a fractional eigenvalue problem," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    20. Ishtiaq Ali & Sami Ullah Khan, 2023. "A Dynamic Competition Analysis of Stochastic Fractional Differential Equation Arising in Finance via Pseudospectral Method," Mathematics, MDPI, vol. 11(6), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.