IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v140y2020ics0960077920306202.html
   My bibliography  Save this article

Lyapunov functions for fractional-order systems in biology: Methods and applications

Author

Listed:
  • Boukhouima, Adnane
  • Hattaf, Khalid
  • Lotfi, El Mehdi
  • Mahrouf, Marouane
  • Torres, Delfim F.M.
  • Yousfi, Noura

Abstract

We prove new estimates of the Caputo derivative of order α ∈ (0, 1] for some specific functions. The estimations are shown useful to construct Lyapunov functions for systems of fractional differential equations in biology, based on those known for ordinary differential equations, and therefore useful to determine the global stability of the equilibrium points for fractional systems. To illustrate the usefulness of our theoretical results, a fractional HIV population model and a fractional cellular model are studied. More precisely, we construct suitable Lyapunov functionals to demonstrate the global stability of the free and endemic equilibriums, for both fractional models, and we also perform some numerical simulations that confirm our choices.

Suggested Citation

  • Boukhouima, Adnane & Hattaf, Khalid & Lotfi, El Mehdi & Mahrouf, Marouane & Torres, Delfim F.M. & Yousfi, Noura, 2020. "Lyapunov functions for fractional-order systems in biology: Methods and applications," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920306202
    DOI: 10.1016/j.chaos.2020.110224
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920306202
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110224?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghanbari, Behzad & Günerhan, Hatıra & Srivastava, H.M., 2020. "An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Owolabi, Kolade M., 2020. "High-dimensional spatial patterns in fractional reaction-diffusion system arising in biology," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    3. Arshad, Sadia & Defterli, Ozlem & Baleanu, Dumitru, 2020. "A second order accurate approximation for fractional derivatives with singular and non-singular kernel applied to a HIV model," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    4. Rosa, Silvério & Torres, Delfim F.M., 2018. "Optimal control of a fractional order epidemic model with application to human respiratory syncytial virus infection," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 142-149.
    5. Fathalla A. Rihan & Dumitru Baleanu & S. Lakshmanan & R. Rakkiyappan, 2014. "On Fractional SIRC Model with Salmonella Bacterial Infection," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-9, April.
    6. Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.
    7. Singh, Jagdev & Jassim, Hassan Kamil & Kumar, Devendra, 2020. "An efficient computational technique for local fractional Fokker Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    8. Adnane Boukhouima & Khalid Hattaf & Noura Yousfi, 2017. "Dynamics of a Fractional Order HIV Infection Model with Specific Functional Response and Cure Rate," International Journal of Differential Equations, Hindawi, vol. 2017, pages 1-8, August.
    9. Scalas, Enrico & Gorenflo, Rudolf & Mainardi, Francesco, 2000. "Fractional calculus and continuous-time finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 376-384.
    10. Mohammed Fathy Elettreby & Ahlam Abdullah Al-Raezah & Tamer Nabil, 2017. "Fractional-Order Model of Two-Prey One-Predator System," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-12, August.
    11. Fazli, Hossein & Nieto, Juan J., 2018. "Fractional Langevin equation with anti-periodic boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 332-337.
    12. Silva, Cristiana J. & Torres, Delfim F.M., 2019. "Stability of a fractional HIV/AIDS model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 164(C), pages 180-190.
    13. Sajjadi, Samaneh Sadat & Baleanu, Dumitru & Jajarmi, Amin & Pirouz, Hassan Mohammadi, 2020. "A new adaptive synchronization and hyperchaos control of a biological snap oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    14. Lokenath Debnath, 2003. "Recent applications of fractional calculus to science and engineering," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2003, pages 1-30, January.
    15. Jajarmi, Amin & Yusuf, Abdullahi & Baleanu, Dumitru & Inc, Mustafa, 2020. "A new fractional HRSV model and its optimal control: A non-singular operator approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    16. Adnane Boukhouima & Khalid Hattaf & Noura Yousfi, 2018. "A Fractional Order Model for Viral Infection with Cure of Infected Cells and Humoral Immunity," International Journal of Differential Equations, Hindawi, vol. 2018, pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bansal, Komal & Mathur, Trilok & Agarwal, Shivi, 2023. "Fractional-order crime propagation model with non-linear transmission rate," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Abboubakar, Hamadjam & Kombou, Lausaire Kemayou & Koko, Adamou Dang & Fouda, Henri Paul Ekobena & Kumar, Anoop, 2021. "Projections and fractional dynamics of the typhoid fever: A case study of Mbandjock in the Centre Region of Cameroon," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Nguiwa, Tchule & Kolaye, Gabriel Guilsou & Justin, Mibaile & Moussa, Djaouda & Betchewe, Gambo & Mohamadou, Alidou, 2021. "Dynamic study of SIAISQVR−B fractional-order cholera model with control strategies in Cameroon Far North Region," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Sulaimon F. Abimbade & Furaha M. Chuma & Sunday O. Sangoniyi & Ramoshweu S. Lebelo & Kazeem O. Okosun & Samson Olaniyi, 2024. "Global Dynamics of a Social Hierarchy-Stratified Malaria Model: Insight from Fractional Calculus," Mathematics, MDPI, vol. 12(10), pages 1-19, May.
    5. Pishro, Aboozar & Shahrokhi, Mohammad & Sadeghi, Hamed, 2022. "Fault-tolerant adaptive fractional controller design for incommensurate fractional-order nonlinear dynamic systems subject to input and output restrictions," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. Kavuran, Gürkan, 2022. "When machine learning meets fractional-order chaotic signals: detecting dynamical variations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Naim, Mouhcine & Lahmidi, Fouad & Namir, Abdelwahed & Kouidere, Abdelfatah, 2021. "Dynamics of an fractional SEIR epidemic model with infectivity in latent period and general nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alqhtani, Manal & Owolabi, Kolade M. & Saad, Khaled M. & Pindza, Edson, 2022. "Efficient numerical techniques for computing the Riesz fractional-order reaction-diffusion models arising in biology," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Danane, Jaouad & Allali, Karam & Hammouch, Zakia, 2020. "Mathematical analysis of a fractional differential model of HBV infection with antibody immune response," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    3. Agarwal, Ritu & Kritika, & Purohit, Sunil Dutt, 2021. "Mathematical model pertaining to the effect of buffer over cytosolic calcium concentration distribution," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    4. Marseguerra, Marzio & Zoia, Andrea, 2008. "Pre-asymptotic corrections to fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2668-2674.
    5. Zheng, Guang-Hui & Zhang, Quan-Guo, 2018. "Solving the backward problem for space-fractional diffusion equation by a fractional Tikhonov regularization method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 148(C), pages 37-47.
    6. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    7. Álvaro Cartea & Thilo Meyer-Brandis, 2010. "How Duration Between Trades of Underlying Securities Affects Option Prices," Review of Finance, European Finance Association, vol. 14(4), pages 749-785.
    8. Saberi Zafarghandi, Fahimeh & Mohammadi, Maryam & Babolian, Esmail & Javadi, Shahnam, 2019. "Radial basis functions method for solving the fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 224-246.
    9. G. Fern'andez-Anaya & L. A. Quezada-T'ellez & B. Nu~nez-Zavala & D. Brun-Battistini, 2019. "Katugampola Generalized Conformal Derivative Approach to Inada Conditions and Solow-Swan Economic Growth Model," Papers 1907.00130, arXiv.org.
    10. Ya Qin & Adnan Khan & Izaz Ali & Maysaa Al Qurashi & Hassan Khan & Rasool Shah & Dumitru Baleanu, 2020. "An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems," Energies, MDPI, vol. 13(11), pages 1-14, May.
    11. Scalas, Enrico & Gallegati, Mauro & Guerci, Eric & Mas, David & Tedeschi, Alessandra, 2006. "Growth and allocation of resources in economics: The agent-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 86-90.
    12. Jorge E. Macías-Díaz, 2019. "Numerically Efficient Methods for Variational Fractional Wave Equations: An Explicit Four-Step Scheme," Mathematics, MDPI, vol. 7(11), pages 1-27, November.
    13. Hussam Aljarrah & Mohammad Alaroud & Anuar Ishak & Maslina Darus, 2022. "Approximate Solution of Nonlinear Time-Fractional PDEs by Laplace Residual Power Series Method," Mathematics, MDPI, vol. 10(12), pages 1-16, June.
    14. Hayashi, Katsuhiko & Kaizoji, Taisei & Pichl, Lukáš, 2007. "Correlation patterns of NIKKEI index constituents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 16-21.
    15. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    16. Enrico Scalas & Rudolf Gorenflo & Hugh Luckock & Francesco Mainardi & Maurizio Mantelli & Marco Raberto, 2004. "Anomalous waiting times in high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 695-702.
    17. Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
    18. Gu, Hui & Liang, Jin-Rong & Zhang, Yun-Xiu, 2012. "Time-changed geometric fractional Brownian motion and option pricing with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3971-3977.
    19. Ali Balcı, Mehmet, 2017. "Time fractional capital-induced labor migration model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 91-98.
    20. Berardi, Luca & Serva, Maurizio, 2005. "Time and foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 403-412.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920306202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.