IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v99y2017icp209-218.html
   My bibliography  Save this article

A chaotic system with an infinite number of equilibrium points located on a line and on a hyperbola and its fractional-order form

Author

Listed:
  • Kingni, Sifeu Takougang
  • Pham, Viet-Thanh
  • Jafari, Sajad
  • Woafo, Paul

Abstract

A three-dimensional autonomous chaotic system with an infinite number of equilibrium points located on a line and a hyperbola is proposed in this paper. To analyze the dynamical behaviors of the proposed system, mathematical tools such as Routh-Hurwitz criteria, Lyapunov exponents and bifurcation diagram are exploited. For a suitable choice of the parameters, the proposed system can generate periodic oscillations and chaotic attractors of different shapes such as bistable and monostable chaotic attractors. In addition, an electronic circuit is designed and implemented to verify the feasibility of the proposed system. A good qualitative agreement is shown between the numerical simulations and the Orcard-PSpice results. Moreover, the fractional-order form of the proposed system is studied using analog and numerical simulations. It is found that chaos, periodic oscillations and periodic spiking exist in this proposed system with order less than three. Then an electronic circuit is designed for the commensurate fractional order α = 0.98, from which we can observe that a chaotic attractor exists in the fractional-order form of the proposed system. Finally, the problem of drive-response generalized projective synchronization of the fractional-order form of the chaotic proposed autonomous system is considered.

Suggested Citation

  • Kingni, Sifeu Takougang & Pham, Viet-Thanh & Jafari, Sajad & Woafo, Paul, 2017. "A chaotic system with an infinite number of equilibrium points located on a line and on a hyperbola and its fractional-order form," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 209-218.
  • Handle: RePEc:eee:chsofr:v:99:y:2017:i:c:p:209-218
    DOI: 10.1016/j.chaos.2017.04.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917301467
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.04.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Yuming & Yang, Qigui, 2015. "A new Lorenz-type hyperchaotic system with a curve of equilibria," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 112(C), pages 40-55.
    2. Agrawal, S.K. & Srivastava, M. & Das, S., 2012. "Synchronization of fractional order chaotic systems using active control method," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 737-752.
    3. Yi Chai & Liping Chen & Ranchao Wu, 2012. "Inverse Projective Synchronization between Two Different Hyperchaotic Systems with Fractional Order," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-18, January.
    4. Peng, Guojun & Jiang, Yaolin & Chen, Fang, 2008. "Generalized projective synchronization of fractional order chaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3738-3746.
    5. Kingni, S.T. & Nana, B. & Mbouna Ngueuteu, G.S. & Woafo, P. & Danckaert, J., 2015. "Bursting oscillations in a 3D system with asymmetrically distributed equilibria: Mechanism, electronic implementation and fractional derivation effect," Chaos, Solitons & Fractals, Elsevier, vol. 71(C), pages 29-40.
    6. Jafari, Sajad & Sprott, J.C., 2013. "Simple chaotic flows with a line equilibrium," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 79-84.
    7. Behnia, S. & Pazhotan, Z. & Ezzati, N. & Akhshani, A., 2014. "Reconfigurable chaotic logic gates based on novel chaotic circuit," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 74-80.
    8. Chunde Yang & Hao Cai & Ping Zhou, 2016. "Compound Generalized Function Projective Synchronization for Fractional-Order Chaotic Systems," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-8, January.
    9. Liping Chen & Shanbi Wei & Yi Chai & Ranchao Wu, 2012. "Adaptive Projective Synchronization between Two Different Fractional-Order Chaotic Systems with Fully Unknown Parameters," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-16, February.
    10. Zhusubaliyev, Zhanybai T. & Mosekilde, Erik, 2015. "Multistability and hidden attractors in a multilevel DC/DC converter," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 109(C), pages 32-45.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Kengne, Jacques & Jafari, Sajad & Pham, Viet-Thanh, 2018. "A new four-dimensional system containing chaotic or hyper-chaotic attractors with no equilibrium, a line of equilibria and unstable equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 108-118.
    2. Jafari, Sajad & Ahmadi, Atefeh & Panahi, Shirin & Rajagopal, Karthikeyan, 2018. "Extreme multi-stability: When imperfection changes quality," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 182-186.
    3. Munoz-Pacheco, J.M. & Zambrano-Serrano, E. & Volos, Ch. & Tacha, O.I. & Stouboulos, I.N. & Pham, V.-T., 2018. "A fractional order chaotic system with a 3D grid of variable attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 69-78.
    4. Singh, Jay Prakash & Roy, Binoy Krishna, 2018. "Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 81-91.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pham, Viet–Thanh & Jafari, Sajad & Volos, Christos & Kapitaniak, Tomasz, 2016. "A gallery of chaotic systems with an infinite number of equilibrium points," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 58-63.
    2. Kingni, Sifeu Takougang & Jafari, Sajad & Pham, Viet-Thanh & Woafo, Paul, 2017. "Constructing and analyzing of a unique three-dimensional chaotic autonomous system exhibiting three families of hidden attractors," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 172-182.
    3. Singh, Jay Prakash & Roy, Binoy Krishna, 2018. "Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 81-91.
    4. Xiong Wang & Viet-Thanh Pham & Christos Volos, 2017. "Dynamics, Circuit Design, and Synchronization of a New Chaotic System with Closed Curve Equilibrium," Complexity, Hindawi, vol. 2017, pages 1-9, February.
    5. Pham, Viet–Thanh & Jafari, Sajad & Volos, Christos & Fortuna, Luigi, 2019. "Simulation and experimental implementation of a line–equilibrium system without linear term," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 213-221.
    6. Singh, Jay Prakash & Roy, Binoy Krishna & Jafari, Sajad, 2018. "New family of 4-D hyperchaotic and chaotic systems with quadric surfaces of equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 243-257.
    7. Zhang, Sen & Zeng, Yicheng, 2019. "A simple Jerk-like system without equilibrium: Asymmetric coexisting hidden attractors, bursting oscillation and double full Feigenbaum remerging trees," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 25-40.
    8. Xu, Quan & Lin, Yi & Bao, Bocheng & Chen, Mo, 2016. "Multiple attractors in a non-ideal active voltage-controlled memristor based Chua's circuit," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 186-200.
    9. Signing, V.R. Folifack & Kengne, J. & Pone, J.R. Mboupda, 2019. "Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 187-198.
    10. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    11. Marius-F. Danca, 2020. "Coexisting Hidden and self-excited attractors in an economic system of integer or fractional order," Papers 2008.12108, arXiv.org, revised Sep 2020.
    12. Dong, Chengwei & Yang, Min & Jia, Lian & Li, Zirun, 2024. "Dynamics investigation and chaos-based application of a novel no-equilibrium system with coexisting hidden attractors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    13. Wafaa S. Sayed & Moheb M. R. Henein & Salwa K. Abd-El-Hafiz & Ahmed G. Radwan, 2017. "Generalized Dynamic Switched Synchronization between Combinations of Fractional-Order Chaotic Systems," Complexity, Hindawi, vol. 2017, pages 1-17, February.
    14. Lin, Y. & Liu, W.B. & Bao, H. & Shen, Q., 2020. "Bifurcation mechanism of periodic bursting in a simple three-element-based memristive circuit with fast-slow effect," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    15. Gu, Yajuan & Yu, Yongguang & Wang, Hu, 2017. "Synchronization-based parameter estimation of fractional-order neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 351-361.
    16. Lai, Qiang & Xu, Guanghui & Pei, Huiqin, 2019. "Analysis and control of multiple attractors in Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 192-200.
    17. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    18. Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
    19. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    20. Owolabi, Kolade M. & Atangana, Abdon, 2017. "Analysis and application of new fractional Adams–Bashforth scheme with Caputo–Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 111-119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:99:y:2017:i:c:p:209-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.