IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v123y2019icp124-139.html
   My bibliography  Save this article

Neimark–Sacker bifurcation in a tritrophic model with defense in the prey

Author

Listed:
  • Blé, Gamaliel
  • Dela-Rosa, Miguel Angel

Abstract

We analyze a tritrophic discrete system. The analysis focuses in two cases, the two dimensional one in which the absence of super-predator lead to a predator-prey discrete system; secondly, we consider a model constructed using the average grow method in each density of the species. In both cases, we prove that the coexistence of species takes place by means of a supercritical Neimark–Sacker bifurcation at one of the fixed points that the system could have. We assume that the lowest trophic level has logistic grow and the functional responses for predators-prey and superpredator-mesopredator are Holling type IV.

Suggested Citation

  • Blé, Gamaliel & Dela-Rosa, Miguel Angel, 2019. "Neimark–Sacker bifurcation in a tritrophic model with defense in the prey," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 124-139.
  • Handle: RePEc:eee:chsofr:v:123:y:2019:i:c:p:124-139
    DOI: 10.1016/j.chaos.2019.03.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919300955
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.03.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Çelik, Canan & Duman, Oktay, 2009. "Allee effect in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1956-1962.
    2. Baogui Xin & Tong Chen & Junhai Ma, 2010. "Neimark-Sacker Bifurcation in a Discrete-Time Financial System," Discrete Dynamics in Nature and Society, Hindawi, vol. 2010, pages 1-12, September.
    3. Banerjee, Ritwick & Das, Pritha & Mukherjee, Debasis, 2018. "Stability and permanence of a discrete-time two-prey one-predator system with Holling Type-III functional response," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 240-248.
    4. Xia Liu & Yanwei Liu & Qiaoping Li, 2015. "Multiple Bifurcations and Chaos in a Discrete Prey-Predator System with Generalized Holling III Functional Response," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-10, February.
    5. Cui, Qianqian & Zhang, Qiang & Qiu, Zhipeng & Hu, Zengyun, 2016. "Complex dynamics of a discrete-time predator-prey system with Holling IV functional response," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 158-171.
    6. S. M. Sohel Rana & Umme Kulsum, 2017. "Bifurcation Analysis and Chaos Control in a Discrete-Time Predator-Prey System of Leslie Type with Simplified Holling Type IV Functional Response," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Zengyun & Teng, Zhidong & Zhang, Tailei & Zhou, Qiming & Chen, Xi, 2017. "Globally asymptotically stable analysis in a discrete time eco-epidemiological system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 20-31.
    2. Jajarmi, Amin & Hajipour, Mojtaba & Baleanu, Dumitru, 2017. "New aspects of the adaptive synchronization and hyperchaos suppression of a financial model," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 285-296.
    3. Saifuddin, Md. & Biswas, Santanu & Samanta, Sudip & Sarkar, Susmita & Chattopadhyay, Joydev, 2016. "Complex dynamics of an eco-epidemiological model with different competition coefficients and weak Allee in the predator," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 270-285.
    4. Li, Xinxin & Yu, Hengguo & Dai, Chuanjun & Ma, Zengling & Wang, Qi & Zhao, Min, 2021. "Bifurcation analysis of a new aquatic ecological model with aggregation effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 75-96.
    5. Zhang, Limin & Wang, Tao, 2023. "Qualitative properties, bifurcations and chaos of a discrete predator–prey system with weak Allee effect on the predator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    6. Chen, Qiaoling & Teng, Zhidong & Wang, Feng, 2021. "Fold-flip and strong resonance bifurcations of a discrete-time mosquito model," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    7. Rihan, F.A. & Rajivganthi, C, 2020. "Dynamics of fractional-order delay differential model of prey-predator system with Holling-type III and infection among predators," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    8. Mondal, Chirodeep & Kesh, Dipak & Mukherjee, Debasis, 2023. "Global stability and bifurcation analysis of an infochemical induced three species discrete-time phytoplankton–zooplankton model," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    9. Rajni, & Ghosh, Bapan, 2022. "Multistability, chaos and mean population density in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    10. Alsakaji, Hebatallah J. & Kundu, Soumen & Rihan, Fathalla A., 2021. "Delay differential model of one-predator two-prey system with Monod-Haldane and holling type II functional responses," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    11. Guangye Chen & Zhidong Teng & Zengyun Hu, 2011. "Analysis of stability for a discrete ratio-dependent predator-prey system," Indian Journal of Pure and Applied Mathematics, Springer, vol. 42(1), pages 1-26, February.
    12. Pal, Pallav Jyoti & Saha, Tapan, 2015. "Qualitative analysis of a predator–prey system with double Allee effect in prey," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 36-63.
    13. Banerjee, Ritwick & Das, Pritha & Mukherjee, Debasis, 2018. "Stability and permanence of a discrete-time two-prey one-predator system with Holling Type-III functional response," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 240-248.
    14. Érika Diz-Pita & M. Victoria Otero-Espinar, 2021. "Predator–Prey Models: A Review of Some Recent Advances," Mathematics, MDPI, vol. 9(15), pages 1-34, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:123:y:2019:i:c:p:124-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.