IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v37y2008i5p1343-1355.html
   My bibliography  Save this article

Limit cycles in a generalized Gause-type predator–prey model

Author

Listed:
  • Moghadas, S.M.
  • Corbett, B.D.

Abstract

We study the problem of the existence of limit cycles for a generalized Gause-type predator–prey model with functional and numerical responses that satisfy some general assumptions. These assumptions describe the effect of prey density on the consumption and reproduction rates of predator. The model is analyzed for the situation in which the conversion efficiency of prey into new predators increases as prey abundance increases. A necessary and sufficient condition for the existence of limit cycles is given. It is shown that the existence of a limit cycle is equivalent to the instability of the unique positive critical point of the model. The results can be applied to the analysis of many models appearing in the ecological literature for predator–prey systems. Some ecological models are given to illustrate the results.

Suggested Citation

  • Moghadas, S.M. & Corbett, B.D., 2008. "Limit cycles in a generalized Gause-type predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1343-1355.
  • Handle: RePEc:eee:chsofr:v:37:y:2008:i:5:p:1343-1355
    DOI: 10.1016/j.chaos.2006.10.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906009945
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.10.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Çelik, Canan & Duman, Oktay, 2009. "Allee effect in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1956-1962.
    2. Wang, Shufan & Tang, Haopeng & Ma, Zhihui, 2021. "Hopf bifurcation of a multiple-delayed predator–prey system with habitat complexity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 1-23.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:37:y:2008:i:5:p:1343-1355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.