IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2024i1p125-d1557846.html
   My bibliography  Save this article

Pattern Dynamics Analysis of Host–Parasite Models with Aggregation Effect Based on Coupled Map Lattices

Author

Listed:
  • Shuo Liang

    (Department of Mathematics, Northeast Forestry University, Harbin 150040, China)

  • Wenlong Wang

    (Department of Mathematics, Northeast Forestry University, Harbin 150040, China)

  • Chunrui Zhang

    (Department of Mathematics, Northeast Forestry University, Harbin 150040, China)

Abstract

Host–parasitoid systems are an essential area of research in ecology and evolutionary biology due to their widespread occurrence in nature and significant impact on species evolution, population dynamics, and ecosystem stability. In such systems, the host is the organism being attacked by the parasitoid, while the parasitoid depends on the host to complete its life cycle. This paper investigates the effect of parasitoid aggregation attacks on a host in a host–parasitoid model with self-diffusion on two-dimensional coupled map lattices. We assume that in the simulation of biological populations on a plane, the interactions between individuals follow periodic boundary conditions. The primary objective is to analyze the complex dynamics of the host–parasitoid interaction model induced by an aggregation effect and diffusion in a discrete setting. Using the aggregation coefficient k as the bifurcating parameter and applying central manifold and normal form analysis, it has been shown that the system is capable of Neimark–Sacker and flip bifurcations even without diffusion. Furthermore, with the influence of diffusion, the system exhibits pure Turing instability, Neimark–Sacker–Turing instability, and Flip–Turing instability. The numerical simulation section explores the path from bifurcation to chaos through calculations of the maximum Lyapunov exponent and the construction of a bifurcation diagram. The interconversion between different Turing instabilities is simulated by adjusting the timestep and self-diffusion coefficient values, which is based on pattern dynamics in ecological modeling. This contributes to a deeper understanding of the dynamic behaviors driven by aggregation effects in the host–parasitoid model.

Suggested Citation

  • Shuo Liang & Wenlong Wang & Chunrui Zhang, 2024. "Pattern Dynamics Analysis of Host–Parasite Models with Aggregation Effect Based on Coupled Map Lattices," Mathematics, MDPI, vol. 13(1), pages 1-45, December.
  • Handle: RePEc:gam:jmathe:v:13:y:2024:i:1:p:125-:d:1557846
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/1/125/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/1/125/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abbas, Mudassar & Giannino, Francesco & Iuorio, Annalisa & Ahmad, Zubair & Calabró, Francesco, 2025. "PDE models for vegetation biomass and autotoxicity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 228(C), pages 386-401.
    2. Xu, Li & Liu, Jiayi & Zhang, Guang, 2018. "Pattern formation and parameter inversion for a discrete Lotka–Volterra cooperative system," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 226-231.
    3. Liu, Xiaoli & Xiao, Dongmei, 2007. "Complex dynamic behaviors of a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 80-94.
    4. Singh, Abhyudai & Emerick, Brooks, 2021. "Generalized stability conditions for host–parasitoid population dynamics: Implications for biological control," Ecological Modelling, Elsevier, vol. 456(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Binhao Hong & Chunrui Zhang, 2023. "Neimark–Sacker Bifurcation of a Discrete-Time Predator–Prey Model with Prey Refuge Effect," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    2. Zhong, Shihong & Xia, Juandi & Liu, Biao, 2021. "Spatiotemporal dynamics analysis of a semi-discrete reaction-diffusion Mussel-Algae system with advection," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    3. Mohammed O. Al-Kaff & Ghada AlNemer & Hamdy A. El-Metwally & Abd-Elalim A. Elsadany & Elmetwally M. Elabbasy, 2024. "Dynamic Behavior and Bifurcation Analysis of a Modified Reduced Lorenz Model," Mathematics, MDPI, vol. 12(9), pages 1-20, April.
    4. Akhtar, S. & Ahmed, R. & Batool, M. & Shah, Nehad Ali & Chung, Jae Dong, 2021. "Stability, bifurcation and chaos control of a discretized Leslie prey-predator model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Çelik, Canan & Duman, Oktay, 2009. "Allee effect in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1956-1962.
    6. Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
    7. Ali Yousef & Fatma Bozkurt Yousef, 2019. "Bifurcation and Stability Analysis of a System of Fractional-Order Differential Equations for a Plant–Herbivore Model with Allee Effect," Mathematics, MDPI, vol. 7(5), pages 1-18, May.
    8. Rajni, & Ghosh, Bapan, 2022. "Multistability, chaos and mean population density in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    9. Zhang, Limin & Zhao, Min, 2009. "Dynamic complexities in a hyperparasitic system with prolonged diapause for host," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1136-1142.
    10. Xiongxiong Du & Xiaoling Han & Ceyu Lei, 2022. "Behavior Analysis of a Class of Discrete-Time Dynamical System with Capture Rate," Mathematics, MDPI, vol. 10(14), pages 1-15, July.
    11. Yousef, A.M. & Rida, S.Z. & Ali, H.M. & Zaki, A.S., 2023. "Stability, co-dimension two bifurcations and chaos control of a host-parasitoid model with mutual interference," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    12. Xiaorong Ma & Qamar Din & Muhammad Rafaqat & Nasir Javaid & Yongliang Feng, 2020. "A Density-Dependent Host-Parasitoid Model with Stability, Bifurcation and Chaos Control," Mathematics, MDPI, vol. 8(4), pages 1-26, April.
    13. Zhang, Xuetian & Zhang, Chunrui & Zhang, Yazhuo, 2024. "Discrete kinetic analysis of a general reaction–diffusion model constructed by Euler discretization and coupled map lattices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 1218-1236.
    14. Li, Tianhua & Zhang, Xuetian & Zhang, Chunrui, 2024. "Pattern dynamics analysis of a space–time discrete spruce budworm model," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    15. Bozkurt, Fatma & Yousef, Ali & Baleanu, Dumitru & Alzabut, Jehad, 2020. "A mathematical model of the evolution and spread of pathogenic coronaviruses from natural host to human host," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    16. Zhu, Lili & Zhao, Min, 2009. "Dynamic complexity of a host–parasitoid ecological model with the Hassell growth function for the host," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1259-1269.
    17. Salman, S.M. & Yousef, A.M. & Elsadany, A.A., 2016. "Stability, bifurcation analysis and chaos control of a discrete predator-prey system with square root functional response," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 20-31.
    18. Guangye Chen & Zhidong Teng & Zengyun Hu, 2011. "Analysis of stability for a discrete ratio-dependent predator-prey system," Indian Journal of Pure and Applied Mathematics, Springer, vol. 42(1), pages 1-26, February.
    19. Hu, Guang-Ping & Li, Wan-Tong & Yan, Xiang-Ping, 2009. "Hopf bifurcations in a predator–prey system with multiple delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1273-1285.
    20. Soukaina, Ben Rhila & Imane, Agmour & Mostafa, Rachik & Naceur, Achtaich & Youssef, El Foutayeni, 2022. "Optimal control of a phytoplankton-zooplankton spatiotemporal discrete bioeconomic model," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2024:i:1:p:125-:d:1557846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.