IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i9p1354-d1385770.html
   My bibliography  Save this article

Dynamic Behavior and Bifurcation Analysis of a Modified Reduced Lorenz Model

Author

Listed:
  • Mohammed O. Al-Kaff

    (Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
    Department of Mathematics, College of Education, Seiyun University, Seiyun, Yemen)

  • Ghada AlNemer

    (Department of Mathematical Sciences, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia)

  • Hamdy A. El-Metwally

    (Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt)

  • Abd-Elalim A. Elsadany

    (Mathematics Department, College of Science and Humanities Studies Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
    Basic Science Department, Faculty of Computers and Informatics, Suez Canal University, Ismailia 41522, Egypt)

  • Elmetwally M. Elabbasy

    (Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt)

Abstract

This study introduces a newly modified Lorenz model capable of demonstrating bifurcation within a specified range of parameters. The model demonstrates various bifurcation behaviors, which are depicted as distinct structures in the diagram. The study aims to discover and analyze the existence and stability of fixed points in the model. To achieve this, the center manifold theorem and bifurcation theory are employed to identify the requirements for pitchfork bifurcation, period-doubling bifurcation, and Neimark–Sacker bifurcation. In addition to theoretical findings, numerical simulations, including bifurcation diagrams, phase pictures, and maximum Lyapunov exponents, showcase the nuanced, complex, and diverse dynamics. Finally, the study applies the Ott–Grebogi–Yorke (OGY) method to control the chaos observed in the reduced modified Lorenz model.

Suggested Citation

  • Mohammed O. Al-Kaff & Ghada AlNemer & Hamdy A. El-Metwally & Abd-Elalim A. Elsadany & Elmetwally M. Elabbasy, 2024. "Dynamic Behavior and Bifurcation Analysis of a Modified Reduced Lorenz Model," Mathematics, MDPI, vol. 12(9), pages 1-20, April.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:9:p:1354-:d:1385770
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/9/1354/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/9/1354/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elsadany, A.A. & Yousef, A.M. & Elsonbaty, Amr, 2018. "Further analytical bifurcation analysis and applications of coupled logistic maps," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 314-336.
    2. Zhang, Limin & Zhang, Chaofeng & He, Zhirong, 2019. "Codimension-one and codimension-two bifurcations of a discrete predator–prey system with strong Allee effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 155-178.
    3. Liu, Xiaoli & Xiao, Dongmei, 2007. "Complex dynamic behaviors of a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 80-94.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Binhao Hong & Chunrui Zhang, 2023. "Neimark–Sacker Bifurcation of a Discrete-Time Predator–Prey Model with Prey Refuge Effect," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    2. Zhong, Shihong & Xia, Juandi & Liu, Biao, 2021. "Spatiotemporal dynamics analysis of a semi-discrete reaction-diffusion Mussel-Algae system with advection," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    3. Akhtar, S. & Ahmed, R. & Batool, M. & Shah, Nehad Ali & Chung, Jae Dong, 2021. "Stability, bifurcation and chaos control of a discretized Leslie prey-predator model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Çelik, Canan & Duman, Oktay, 2009. "Allee effect in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1956-1962.
    5. Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
    6. Ali Yousef & Fatma Bozkurt Yousef, 2019. "Bifurcation and Stability Analysis of a System of Fractional-Order Differential Equations for a Plant–Herbivore Model with Allee Effect," Mathematics, MDPI, vol. 7(5), pages 1-18, May.
    7. Rajni, & Ghosh, Bapan, 2022. "Multistability, chaos and mean population density in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Zhang, Limin & Zhao, Min, 2009. "Dynamic complexities in a hyperparasitic system with prolonged diapause for host," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1136-1142.
    9. Xiongxiong Du & Xiaoling Han & Ceyu Lei, 2022. "Behavior Analysis of a Class of Discrete-Time Dynamical System with Capture Rate," Mathematics, MDPI, vol. 10(14), pages 1-15, July.
    10. Yousef, A.M. & Rida, S.Z. & Ali, H.M. & Zaki, A.S., 2023. "Stability, co-dimension two bifurcations and chaos control of a host-parasitoid model with mutual interference," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    11. Xiaorong Ma & Qamar Din & Muhammad Rafaqat & Nasir Javaid & Yongliang Feng, 2020. "A Density-Dependent Host-Parasitoid Model with Stability, Bifurcation and Chaos Control," Mathematics, MDPI, vol. 8(4), pages 1-26, April.
    12. Bozkurt, Fatma & Yousef, Ali & Baleanu, Dumitru & Alzabut, Jehad, 2020. "A mathematical model of the evolution and spread of pathogenic coronaviruses from natural host to human host," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    13. Limei Liu & Xitong Zhong, 2024. "Research on Stability and Bifurcation for Two-Dimensional Two-Parameter Squared Discrete Dynamical Systems," Mathematics, MDPI, vol. 12(15), pages 1-20, August.
    14. Zhu, Lili & Zhao, Min, 2009. "Dynamic complexity of a host–parasitoid ecological model with the Hassell growth function for the host," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1259-1269.
    15. Salman, S.M. & Yousef, A.M. & Elsadany, A.A., 2016. "Stability, bifurcation analysis and chaos control of a discrete predator-prey system with square root functional response," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 20-31.
    16. Guangye Chen & Zhidong Teng & Zengyun Hu, 2011. "Analysis of stability for a discrete ratio-dependent predator-prey system," Indian Journal of Pure and Applied Mathematics, Springer, vol. 42(1), pages 1-26, February.
    17. Hu, Guang-Ping & Li, Wan-Tong & Yan, Xiang-Ping, 2009. "Hopf bifurcations in a predator–prey system with multiple delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1273-1285.
    18. Soukaina, Ben Rhila & Imane, Agmour & Mostafa, Rachik & Naceur, Achtaich & Youssef, El Foutayeni, 2022. "Optimal control of a phytoplankton-zooplankton spatiotemporal discrete bioeconomic model," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    19. Banda, Heather & Chapwanya, Michael & Dumani, Phindile, 2022. "Pattern formation in the Holling–Tanner predator–prey model with predator-taxis. A nonstandard finite difference approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 336-353.
    20. Wijeratne, A.W. & Yi, Fengqi & Wei, Junjie, 2009. "Bifurcation analysis in the diffusive Lotka–Volterra system: An application to market economy," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 902-911.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:9:p:1354-:d:1385770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.