IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v35y2008i2p308-312.html
   My bibliography  Save this article

The group SO(4) and generalized function

Author

Listed:
  • Sadeghi, J.
  • Pahlavani, M.
  • Emadi, A.

Abstract

In this paper, we give the matrix elements of SO(4) expressed in terms of the product of two associated Jacobi functions. Also we factorize this associated equation in terms of first order equations. These first order operators are the generators of SO(3)⊗SO(3) symmetry group which is important for describing de Sitter space–time.

Suggested Citation

  • Sadeghi, J. & Pahlavani, M. & Emadi, A., 2008. "The group SO(4) and generalized function," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 308-312.
  • Handle: RePEc:eee:chsofr:v:35:y:2008:i:2:p:308-312
    DOI: 10.1016/j.chaos.2007.06.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007790700478X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.06.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2007. "Gauge anomalies, SU(N) irreducible representation and the number of elementary particles of a minimally extended standard model," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 14-16.
    2. El Naschie, M. Saladin, 2006. "Intermediate prerequisites for E-infinity theory (Further recommended reading in nonlinear dynamics and mathematical physics)," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 622-628.
    3. El Naschie, M.S., 2006. "Fuzzy Dodecahedron topology and E-infinity spacetime as a model for quantum physics," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1025-1033.
    4. Sadeghi, J. & Asadi, A., 2007. "Factorization method and stability of ϕ4 and Sine–Gordon theory," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 547-553.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Ji-Huan, 2007. "On the number of elementary particles in a resolution dependent fractal spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1645-1648.
    2. El Naschie, M.S., 2008. "Deriving the largest expected number of elementary particles in the standard model from the maximal compact subgroup H of the exceptional Lie group E7(-5)," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 956-961.
    3. He, Ji-Huan & Xu, Lan, 2009. "Number of elementary particles using exceptional Lie symmetry groups hierarchy," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2119-2124.
    4. Mursaleen, M. & Mohiuddine, S.A., 2009. "On stability of a cubic functional equation in intuitionistic fuzzy normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2997-3005.
    5. Shams, M. & Vaezpour, S.M., 2009. "Best approximation on probabilistic normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1661-1667.
    6. Wu, Yahao & Wang, Xiao-Tian & Wu, Min, 2009. "Fractional-moment CAPM with loss aversion," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1406-1414.
    7. Agop, M. & Paun, V. & Harabagiu, Anca, 2008. "El Naschie’s ε(∞) theory and effects of nanoparticle clustering on the heat transport in nanofluids," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1269-1278.
    8. He, Ji-Huan & Wan, Yu-Qin & Xu, Lan, 2007. "Nano-effects, quantum-like properties in electrospun nanofibers," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 26-37.
    9. El Naschie, M.S., 2008. "The internal dynamics of the exceptional Lie symmetry groups hierarchy and the coupling constants of unification," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1031-1038.
    10. Mursaleen, M. & Lohani, Q.M. Danish & Mohiuddine, S.A., 2009. "Intuitionistic fuzzy 2-metric space and its completion," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1258-1265.
    11. El Naschie, M.S., 2007. "SO(10) grand unification in a fuzzy setting," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 958-961.
    12. Falcón, Sergio & Plaza, Ángel, 2008. "On the 3-dimensional k-Fibonacci spirals," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 993-1003.
    13. Akbulak, Mehmet & Bozkurt, Durmuş, 2009. "On the order-m generalized Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1347-1355.
    14. He, Ji-Huan, 2009. "A generalized poincaré-invariant action with possible application in strings and E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1667-1670.
    15. Saadati, Reza, 2008. "On the L-fuzzy topological spaces," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1419-1426.
    16. Ješić, Siniša N. & Babačev, Nataša A., 2008. "Common fixed point theorems in intuitionistic fuzzy metric spaces and L-fuzzy metric spaces with nonlinear contractive condition," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 675-687.
    17. Mursaleen, M. & Mohiuddine, S.A., 2009. "Nonlinear operators between intuitionistic fuzzy normed spaces and Fréchet derivative," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1010-1015.
    18. Gottlieb, I. & Agop, M. & Enache, V., 2009. "Games with Cantor’s dust," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 940-945.
    19. Alimohammady, Mohsen & Esmaeli, Abdolreza & Saadati, Reza, 2009. "Completeness results in probabilistic metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 765-769.
    20. Nozari, Kourosh & Mehdipour, S. Hamid, 2009. "Failure of standard thermodynamics in planck scale black hole system," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 956-970.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:35:y:2008:i:2:p:308-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.