IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i4p1661-1667.html
   My bibliography  Save this article

Best approximation on probabilistic normed spaces

Author

Listed:
  • Shams, M.
  • Vaezpour, S.M.

Abstract

The main purpose of this paper is to study the best approximation in probabilistic normed spaces. We define the best approximation in these spaces and generalize some definitions such as set of best approximation, proximinal set and approximatively compact set. Then prove some theorems about them.

Suggested Citation

  • Shams, M. & Vaezpour, S.M., 2009. "Best approximation on probabilistic normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1661-1667.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:4:p:1661-1667
    DOI: 10.1016/j.chaos.2008.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908003111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2007. "On gauge invariance, dissipative quantum mechanics and self-adjoint sets," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 271-273.
    2. El Naschie, Mohamed Saladin, 2006. "The idealized quantum two-slit gedanken experiment revisited—Criticism and reinterpretation," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 843-849.
    3. El Naschie, M.S., 2006. "Fuzzy Dodecahedron topology and E-infinity spacetime as a model for quantum physics," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1025-1033.
    4. El Naschie, M.S., 2008. "P-Adic analysis and the transfinite E8 exceptional Lie symmetry group unification," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 612-614.
    5. El Naschie, M.S., 2006. "On two new fuzzy Kähler manifolds, Klein modular space and ’t Hooft holographic principles," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 876-881.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alimohammady, Mohsen & Esmaeli, Abdolreza & Saadati, Reza, 2009. "Completeness results in probabilistic metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 765-769.
    2. Yilmaz, Yilmaz, 2009. "Fréchet differentiation of nonlinear operators between fuzzy normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 473-484.
    3. Saadati, Reza, 2009. "A note on “Some results on the IF-normed spaces”," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 206-213.
    4. Saadati, Reza, 2008. "On the L-fuzzy topological spaces," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1419-1426.
    5. Mursaleen, M. & Danish Lohani, Q.M., 2009. "Intuitionistic fuzzy 2-normed space and some related concepts," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 224-234.
    6. He, Ji-Huan & Xu, Lan & Zhang, Li-Na & Wu, Xu-Hong, 2007. "Twenty-six dimensional polytope and high energy spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 5-13.
    7. Mohiuddine, S.A., 2009. "Stability of Jensen functional equation in intuitionistic fuzzy normed space," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2989-2996.
    8. Mursaleen, M. & Lohani, Q.M. Danish & Mohiuddine, S.A., 2009. "Intuitionistic fuzzy 2-metric space and its completion," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1258-1265.
    9. Azab Abd-Allah, M. & El-Saady, Kamal & Ghareeb, A., 2009. "(r,s)-Fuzzy F-open sets and (r,s)-fuzzy F-closed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 649-656.
    10. Mursaleen, M. & Danish Lohani, Q.M., 2009. "Baire’s and Cantor’s theorems in intuitionistic fuzzy 2-metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2254-2259.
    11. Deschrijver, Glad & O’Regan, Donal & Saadati, Reza & Mansour Vaezpour, S., 2009. "L-Fuzzy Euclidean normed spaces and compactness," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 40-45.
    12. Mursaleen, M. & Mohiuddine, S.A., 2009. "Nonlinear operators between intuitionistic fuzzy normed spaces and Fréchet derivative," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1010-1015.
    13. Wu, Guo-cheng, 2009. "Prolongation approach to Lax pairs and Bäcklund transformation of the variable coefficient KdV equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 408-411.
    14. Rezaiyan, R. & Cho, Y.J. & Saadati, R., 2008. "A common fixed point theorem in Menger probabilistic quasi-metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1153-1157.
    15. Sadeghi, J. & Pahlavani, M. & Emadi, A., 2008. "The group SO(4) and generalized function," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 308-312.
    16. El Naschie, M.S., 2008. "Deriving the largest expected number of elementary particles in the standard model from the maximal compact subgroup H of the exceptional Lie group E7(-5)," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 956-961.
    17. Li, Li & Liu, Xiaodong, 2009. "New approach on robust stability for uncertain T–S fuzzy systems with state and input delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2329-2339.
    18. Giné, Jaume, 2008. "On the origin of the deflection of light," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 1-6.
    19. Mursaleen, M. & Mohiuddine, S.A., 2009. "On stability of a cubic functional equation in intuitionistic fuzzy normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2997-3005.
    20. Saadati, Reza, 2008. "Notes to the paper “Fixed points in intuitionistic fuzzy metric spaces” and its generalization to L-fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 176-180.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:4:p:1661-1667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.