IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v32y2007i5p1645-1648.html
   My bibliography  Save this article

On the number of elementary particles in a resolution dependent fractal spacetime

Author

Listed:
  • He, Ji-Huan

Abstract

We reconsider the fundamental question regarding the number of elementary particles in a minimally extended standard model. The main conclusion is that since the dimension of E-infinity spacetime is resolution dependent, then the number of elementary particles is also resolution dependent. For D=10 of superstrings, D=11 of M theory and D=12 of F theory one finds N(SM) equal to (6)(10)=60, (6)(11)=66 and (6)(12)=72 particles, respectively. This is in perfect agreement with prediction made previously by Mohamed Saladin El-Naschie and Marek-Crnjac.

Suggested Citation

  • He, Ji-Huan, 2007. "On the number of elementary particles in a resolution dependent fractal spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1645-1648.
  • Handle: RePEc:eee:chsofr:v:32:y:2007:i:5:p:1645-1648
    DOI: 10.1016/j.chaos.2006.08.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906008393
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.08.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marek-Crnjac, L., 2006. "Different Higgs models and the number of Higgs particles," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 575-579.
    2. El Naschie, M.S., 2005. "On Einstein’s super symmetric tensor and the number of elementary particles of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1521-1525.
    3. El Naschie, M.S., 2005. "On 336 kissing spheres in 10 dimensions, 528 P-Brane states in 11 dimensions and the 60 elementary particles of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 24(2), pages 447-457.
    4. El Naschie, M.S., 2005. "A note on various supersymmetric extensions of the standard model of high-energy particles and E-Infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 23(2), pages 683-688.
    5. El Naschie, M. Saladin, 2006. "Intermediate prerequisites for E-infinity theory (Further recommended reading in nonlinear dynamics and mathematical physics)," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 622-628.
    6. El Naschie, M.S., 2006. "Fuzzy Dodecahedron topology and E-infinity spacetime as a model for quantum physics," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1025-1033.
    7. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    8. El Naschie, M.S., 2005. "A P-Brane vindication of the two Higgs-doublet minimally super-symmetric standard model and related issues," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1511-1514.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Ji-Huan, 2008. "String theory in a scale dependent discontinuous space–time," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 542-545.
    2. He, Ji-Huan & Xu, Lan, 2009. "Number of elementary particles using exceptional Lie symmetry groups hierarchy," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2119-2124.
    3. Marek-Crnjac, L., 2008. "The connection between the order of simple groups and the maximum number of elementary particles," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 641-644.
    4. El Naschie, M.S., 2007. "SU(5) grand unification in a transfinite form," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 370-374.
    5. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    6. El Naschie, M.S., 2007. "SO(10) grand unification in a fuzzy setting," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 958-961.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Ji-Huan, 2007. "E-Infinity theory and the Higgs field," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 782-786.
    2. El Naschie, M.S., 2008. "Deriving the largest expected number of elementary particles in the standard model from the maximal compact subgroup H of the exceptional Lie group E7(-5)," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 956-961.
    3. He, Ji-Huan & Xu, Lan, 2009. "Number of elementary particles using exceptional Lie symmetry groups hierarchy," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2119-2124.
    4. He, Ji-Huan, 2007. "The number of elementary particles in a fractal M-theory of 11.2360667977 dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 346-351.
    5. Sadeghi, J. & Pahlavani, M. & Emadi, A., 2008. "The group SO(4) and generalized function," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 308-312.
    6. El Naschie, M.S., 2008. "Bounds on the number of possible Higgs particles using grand unification and exceptional Lie groups," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 633-637.
    7. Marek-Crnjac, L., 2006. "Different Higgs models and the number of Higgs particles," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 575-579.
    8. Wu, Yahao & Wang, Xiao-Tian & Wu, Min, 2009. "Fractional-moment CAPM with loss aversion," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1406-1414.
    9. El Naschie, M.S., 2008. "Conjectures regarding kissing spheres hierarchy and quantum gravity unification," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 346-350.
    10. El Naschie, M.S., 2007. "The Fibonacci code behind super strings and P-Branes. An answer to M. Kaku’s fundamental question," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 537-547.
    11. He, Ji-Huan & Wan, Yu-Qin & Xu, Lan, 2007. "Nano-effects, quantum-like properties in electrospun nanofibers," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 26-37.
    12. El Naschie, M.S., 2007. "Estimating the experimental value of the electromagnetic fine structure constant α¯0=1/137.036 using the Leech lattice in conjunction with the monster group and Spher’s kissing number in 24 dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 383-387.
    13. El Naschie, M.S., 2008. "Exceptional Lie groups hierarchy and some fundamental high energy physics equations," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 82-84.
    14. Falcón, Sergio & Plaza, Ángel, 2008. "On the 3-dimensional k-Fibonacci spirals," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 993-1003.
    15. Akbulak, Mehmet & Bozkurt, Durmuş, 2009. "On the order-m generalized Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1347-1355.
    16. El Naschie, M.S., 2007. "SU(5) grand unification in a transfinite form," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 370-374.
    17. Nozari, Kourosh & Mehdipour, S. Hamid, 2009. "Failure of standard thermodynamics in planck scale black hole system," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 956-970.
    18. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    19. Marek-Crnjac, L., 2007. "The maximum number of elementary particles in a super symmetric extension of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1631-1636.
    20. El Naschie, M.S., 2008. "Freudental magic square and its dimensional implication for α¯0≃137 and high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 546-549.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:32:y:2007:i:5:p:1645-1648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.