IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v37y2008i5p1419-1426.html
   My bibliography  Save this article

On the L-fuzzy topological spaces

Author

Listed:
  • Saadati, Reza

Abstract

As a natural generalization of fuzzy metric spaces due to George and Veeramani [George A, Veeramani P. On some result in fuzzy metric space. Fuzzy Sets Syst 1994;64:395–9], the present author defined the notion of L-fuzzy metric spaces. In this paper we prove some known results of metric spaces including Uniform continuity theorem and Ascoli–Arzela theorem for L-fuzzy metric spaces. We also prove that every L-fuzzy metric space has a countably locally finite basis and use this result to conclude that every L-fuzzy metric space is metrizable.

Suggested Citation

  • Saadati, Reza, 2008. "On the L-fuzzy topological spaces," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1419-1426.
  • Handle: RePEc:eee:chsofr:v:37:y:2008:i:5:p:1419-1426
    DOI: 10.1016/j.chaos.2006.10.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906010046
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.10.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, Mohamed Saladin, 2006. "The idealized quantum two-slit gedanken experiment revisited—Criticism and reinterpretation," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 843-849.
    2. Saadati, Reza & Park, Jin Han, 2006. "On the intuitionistic fuzzy topological spaces," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 331-344.
    3. El Naschie, M.S., 2006. "Fuzzy Dodecahedron topology and E-infinity spacetime as a model for quantum physics," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1025-1033.
    4. Gregori, V. & Romaguera, S. & Veeramani, P., 2006. "A note on intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 902-905.
    5. Saadati, Reza & Razani, Abdolrahman & Adibi, H., 2007. "A common fixed point theorem in L-fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 358-363.
    6. El Naschie, M.S., 2006. "On two new fuzzy Kähler manifolds, Klein modular space and ’t Hooft holographic principles," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 876-881.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masoumeh Madadi & Donal O’Regan & Choonkil Park & Manuel de la Sen & Reza Saadati, 2020. "On the Topology Induced by C *-Algebra-Valued Fuzzy Metric Spaces," Mathematics, MDPI, vol. 8(6), pages 1-10, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saadati, Reza, 2009. "A note on “Some results on the IF-normed spaces”," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 206-213.
    2. Deschrijver, Glad & O’Regan, Donal & Saadati, Reza & Mansour Vaezpour, S., 2009. "L-Fuzzy Euclidean normed spaces and compactness," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 40-45.
    3. Saadati, R. & Sedghi, S. & Shobe, N., 2008. "Modified intuitionistic fuzzy metric spaces and some fixed point theorems," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 36-47.
    4. Shams, M. & Vaezpour, S.M., 2009. "Best approximation on probabilistic normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1661-1667.
    5. Mursaleen, M. & Lohani, Q.M. Danish & Mohiuddine, S.A., 2009. "Intuitionistic fuzzy 2-metric space and its completion," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1258-1265.
    6. Alimohammady, Mohsen & Esmaeli, Abdolreza & Saadati, Reza, 2009. "Completeness results in probabilistic metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 765-769.
    7. Mursaleen, M. & Danish Lohani, Q.M., 2009. "Intuitionistic fuzzy 2-normed space and some related concepts," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 224-234.
    8. Yilmaz, Yilmaz, 2009. "Fréchet differentiation of nonlinear operators between fuzzy normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 473-484.
    9. Goudarzi, M. & Vaezpour, S.M. & Saadati, R., 2009. "On the intuitionistic fuzzy inner product spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1105-1112.
    10. Ješić, Siniša N., 2009. "Convex structure, normal structure and a fixed point theorem in intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 292-301.
    11. Mohiuddine, S.A., 2009. "Stability of Jensen functional equation in intuitionistic fuzzy normed space," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2989-2996.
    12. Mursaleen, M. & Danish Lohani, Q.M., 2009. "Baire’s and Cantor’s theorems in intuitionistic fuzzy 2-metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2254-2259.
    13. Mursaleen, M. & Mohiuddine, S.A., 2009. "On stability of a cubic functional equation in intuitionistic fuzzy normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2997-3005.
    14. Saadati, Reza, 2008. "Notes to the paper “Fixed points in intuitionistic fuzzy metric spaces” and its generalization to L-fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 176-180.
    15. Mursaleen, M. & Mohiuddine, S.A., 2009. "Statistical convergence of double sequences in intuitionistic fuzzy normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2414-2421.
    16. Ćirić, Ljubomir B. & Ješić, Siniša N. & Ume, Jeong Sheok, 2008. "The existence theorems for fixed and periodic points of nonexpansive mappings in intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 781-791.
    17. Saadati, Reza & Razani, Abdolrahman & Adibi, H., 2007. "A common fixed point theorem in L-fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 358-363.
    18. Ješić, Siniša N. & Babačev, Nataša A., 2008. "Common fixed point theorems in intuitionistic fuzzy metric spaces and L-fuzzy metric spaces with nonlinear contractive condition," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 675-687.
    19. Mursaleen, M. & Mohiuddine, S.A., 2009. "Nonlinear operators between intuitionistic fuzzy normed spaces and Fréchet derivative," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1010-1015.
    20. Deshpande, Bhavana, 2009. "Fixed point and (DS)-weak commutativity condition in intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2722-2728.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:37:y:2008:i:5:p:1419-1426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.