IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v31y2007i1p14-16.html
   My bibliography  Save this article

Gauge anomalies, SU(N) irreducible representation and the number of elementary particles of a minimally extended standard model

Author

Listed:
  • El Naschie, M.S.

Abstract

By looking carefully at the adjoint representation of the SU(N) Lie group as well as the tensor representation of the same, relationships are found from which one can determine the number of Goldstone particles. Subsequently the number of elementary particles missing from the standard model are conjectured.

Suggested Citation

  • El Naschie, M.S., 2007. "Gauge anomalies, SU(N) irreducible representation and the number of elementary particles of a minimally extended standard model," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 14-16.
  • Handle: RePEc:eee:chsofr:v:31:y:2007:i:1:p:14-16
    DOI: 10.1016/j.chaos.2006.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906005686
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naschie, M.S. El, 2006. "Holographic correspondence and quantum gravity in E-infinity spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 871-875.
    2. El Naschie, Mohamed Saladin, 2006. "Is gravity less fundamental than elementary particles theory? Critical remarks on holography and E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 803-807.
    3. Iovane, G., 2006. "Cantorian space–time and Hilbert space: Part II—Relevant consequences," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 1-22.
    4. El Naschie, M.S., 2006. "Elementary number theory in superstrings, loop quantum mechanics, twistors and E-infinity high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 297-330.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Ji-Huan & Xu, Lan, 2009. "Number of elementary particles using exceptional Lie symmetry groups hierarchy," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2119-2124.
    2. Gottlieb, I. & Agop, M. & Enache, V., 2009. "Games with Cantor’s dust," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 940-945.
    3. El Naschie, M.S., 2008. "The internal dynamics of the exceptional Lie symmetry groups hierarchy and the coupling constants of unification," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1031-1038.
    4. Agop, M. & Paun, V. & Harabagiu, Anca, 2008. "El Naschie’s ε(∞) theory and effects of nanoparticle clustering on the heat transport in nanofluids," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1269-1278.
    5. El Naschie, M.S., 2007. "From symmetry to particles," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 427-430.
    6. Sadeghi, J. & Pahlavani, M. & Emadi, A., 2008. "The group SO(4) and generalized function," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 308-312.
    7. El Naschie, M.S., 2008. "Deriving the largest expected number of elementary particles in the standard model from the maximal compact subgroup H of the exceptional Lie group E7(-5)," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 956-961.
    8. Agop, M. & Chicos, Liliana & Nica, P., 2009. "Transport phenomena in nanostructures and non-differentiable space–time," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 803-814.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Naschie, M.S., 2007. "The Fibonacci code behind super strings and P-Branes. An answer to M. Kaku’s fundamental question," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 537-547.
    2. El Naschie, M.S., 2007. "Estimating the experimental value of the electromagnetic fine structure constant α¯0=1/137.036 using the Leech lattice in conjunction with the monster group and Spher’s kissing number in 24 dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 383-387.
    3. El Naschie, M.S., 2006. "Is Einstein’s general field equation more fundamental than quantum field theory and particle physics?," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 525-531.
    4. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    5. El Naschie, M.S., 2007. "From symmetry to particles," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 427-430.
    6. El Naschie, M.S., 2007. "Feigenbaum scenario for turbulence and Cantorian E-infinity theory of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 911-915.
    7. El Naschie, M.S., 2007. "On the universality class of all universality classes and E-infinity spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 927-936.
    8. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    9. El Naschie, M.S., 2007. "Determining the number of Fermions and the number of Boson separately in an extended standard model," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 1241-1243.
    10. El Naschie, M.S., 2006. "On two new fuzzy Kähler manifolds, Klein modular space and ’t Hooft holographic principles," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 876-881.
    11. Stakhov, Alexey, 2007. "The generalized golden proportions, a new theory of real numbers, and ternary mirror-symmetrical arithmetic," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 315-334.
    12. Iovane, G., 2009. "From Menger–Urysohn to Hausdorff dimensions in high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2338-2341.
    13. Büyükkılıç, F. & Demirhan, D., 2009. "Cumulative growth with fibonacci approach, golden section and physics," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 24-32.
    14. El Naschie, M.S., 2006. "E-infinity theory—Some recent results and new interpretations," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 845-853.
    15. El Naschie, M.S., 2008. "Noether’s theorem, exceptional Lie groups hierarchy and determining 1/α≅137 of electromagnetism," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 99-103.
    16. El Naschie, M.S., 2006. "Fuzzy Dodecahedron topology and E-infinity spacetime as a model for quantum physics," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1025-1033.
    17. Sergeyev, Yaroslav D., 2007. "Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 50-75.
    18. El Naschie, M.S., 2006. "Superstring theory: What it cannot do but E-infinity could," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 65-68.
    19. Saniga, Metod & Planat, Michel, 2008. "Projective planes over “Galois” double numbers and a geometrical principle of complementarity," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 374-381.
    20. Stakhov, A.P., 2007. "The “golden” matrices and a new kind of cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 1138-1146.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:31:y:2007:i:1:p:14-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.