IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v37y2008i3p675-687.html
   My bibliography  Save this article

Common fixed point theorems in intuitionistic fuzzy metric spaces and L-fuzzy metric spaces with nonlinear contractive condition

Author

Listed:
  • Ješić, Siniša N.
  • Babačev, Nataša A.

Abstract

The purpose of this paper is to prove some common fixed point theorems for a pair of R-weakly commuting mappings defined on intuitionistic fuzzy metric spaces [Park JH. Intuitionistic fuzzy metric spaces. Chaos, Solitons & Fractals 2004;22:1039–46] and L-fuzzy metric spaces [Saadati R, Razani A, Adibi H. A common fixed point theorem in L-fuzzy metric spaces. Chaos, Solitons & Fractals, doi:10.1016/j.chaos.2006.01.023], with nonlinear contractive condition, defined with function, first observed by Boyd and Wong [Boyd DW, Wong JSW. On nonlinear contractions. Proc Am Math Soc 1969;20:458–64]. Following Pant [Pant RP. Common fixed points of noncommuting mappings. J Math Anal Appl 1994;188:436–40] we define R-weak commutativity for a pair of mappings and then prove the main results. These results generalize some known results due to Saadati et al., and Jungck [Jungck G. Commuting maps and fixed points. Am Math Mon 1976;83:261–3]. Some examples and comments according to the preceding results are given.

Suggested Citation

  • Ješić, Siniša N. & Babačev, Nataša A., 2008. "Common fixed point theorems in intuitionistic fuzzy metric spaces and L-fuzzy metric spaces with nonlinear contractive condition," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 675-687.
  • Handle: RePEc:eee:chsofr:v:37:y:2008:i:3:p:675-687
    DOI: 10.1016/j.chaos.2006.09.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906009106
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.09.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alaca, Cihangir & Turkoglu, Duran & Yildiz, Cemil, 2006. "Fixed points in intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 29(5), pages 1073-1078.
    2. Mohamad, Abdul, 2007. "Fixed-point theorems in intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1689-1695.
    3. Razani, Abdolrahman, 2006. "Existence of fixed point for the nonexpansive mapping of intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 367-373.
    4. El Naschie, M.S., 2006. "Fuzzy Dodecahedron topology and E-infinity spacetime as a model for quantum physics," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1025-1033.
    5. Saadati, Reza & Razani, Abdolrahman & Adibi, H., 2007. "A common fixed point theorem in L-fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 358-363.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ćirić, Ljubomir B. & Ješić, Siniša N. & Ume, Jeong Sheok, 2008. "The existence theorems for fixed and periodic points of nonexpansive mappings in intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 781-791.
    2. Qiu, Dong & Shu, Lan & Guan, Jian, 2009. "Common fixed point theorems for fuzzy mappings under Φ-contraction condition," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 360-367.
    3. Ješić, Siniša N., 2009. "Convex structure, normal structure and a fixed point theorem in intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 292-301.
    4. Saleem, Naeem & Ahmad, Khaleel & Ishtiaq, Umar & De la Sen, Manuel, 2023. "Multivalued neutrosophic fractals and Hutchinson-Barnsley operator in neutrosophic metric space," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    5. Mursaleen, M. & Mohiuddine, S.A., 2009. "Statistical convergence of double sequences in intuitionistic fuzzy normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2414-2421.
    6. Saadati, Reza, 2008. "On the L-fuzzy topological spaces," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1419-1426.
    7. Saadati, Reza, 2009. "A note on “Some results on the IF-normed spaces”," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 206-213.
    8. Martínez-Moreno, J. & Roldán, A. & Roldán, C., 2009. "A note on the L-fuzzy Banach’s contraction principle," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2399-2400.
    9. Tatjana Došenović & Dušan Rakić & Nebojša Ralević & Biljana Carić, 2024. "Note on Intuitionistic Fuzzy Metric-like Spaces with Application in Image Processing," Mathematics, MDPI, vol. 12(15), pages 1-19, July.
    10. Sadeghi, J. & Pahlavani, M. & Emadi, A., 2008. "The group SO(4) and generalized function," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 308-312.
    11. Mursaleen, M. & Mohiuddine, S.A., 2009. "On stability of a cubic functional equation in intuitionistic fuzzy normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2997-3005.
    12. Saadati, Reza, 2008. "Notes to the paper “Fixed points in intuitionistic fuzzy metric spaces” and its generalization to L-fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 176-180.
    13. Shams, M. & Vaezpour, S.M., 2009. "Best approximation on probabilistic normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1661-1667.
    14. Saadati, R. & Sedghi, S. & Shobe, N., 2008. "Modified intuitionistic fuzzy metric spaces and some fixed point theorems," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 36-47.
    15. He, Ji-Huan, 2007. "On the number of elementary particles in a resolution dependent fractal spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1645-1648.
    16. Mursaleen, M. & Lohani, Q.M. Danish & Mohiuddine, S.A., 2009. "Intuitionistic fuzzy 2-metric space and its completion," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1258-1265.
    17. El Naschie, M.S., 2007. "SO(10) grand unification in a fuzzy setting," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 958-961.
    18. Falcón, Sergio & Plaza, Ángel, 2008. "On the 3-dimensional k-Fibonacci spirals," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 993-1003.
    19. Akbulak, Mehmet & Bozkurt, Durmuş, 2009. "On the order-m generalized Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1347-1355.
    20. Deschrijver, Glad & O’Regan, Donal & Saadati, Reza & Mansour Vaezpour, S., 2009. "L-Fuzzy Euclidean normed spaces and compactness," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 40-45.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:37:y:2008:i:3:p:675-687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.