IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v34y2007i1p87-103.html
   My bibliography  Save this article

Continuous-time random walk and parametric subordination in fractional diffusion

Author

Listed:
  • Gorenflo, Rudolf
  • Mainardi, Francesco
  • Vivoli, Alessandro

Abstract

The well-scaled transition to the diffusion limit in the framework of the theory of continuous-time random walk (CTRW) is presented starting from its representation as an infinite series that points out the subordinated character of the CTRW itself. We treat the CTRW as a combination of a random walk on the axis of physical time with a random walk in space, both walks happening in discrete operational time. In the continuum limit, we obtain a (generally non-Markovian) diffusion process governed by a space-time fractional diffusion equation. The essential assumption is that the probabilities for waiting times and jump-widths behave asymptotically like powers with negative exponents related to the orders of the fractional derivatives. By what we call parametric subordination, applied to a combination of a Markov process with a positively oriented Lévy process, we generate and display sample paths for some special cases.

Suggested Citation

  • Gorenflo, Rudolf & Mainardi, Francesco & Vivoli, Alessandro, 2007. "Continuous-time random walk and parametric subordination in fractional diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 34(1), pages 87-103.
  • Handle: RePEc:eee:chsofr:v:34:y:2007:i:1:p:87-103
    DOI: 10.1016/j.chaos.2007.01.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907000926
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.01.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ,, 2001. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 17(6), pages 1157-1160, December.
    2. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    3. Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.
    4. Scalas, Enrico & Gorenflo, Rudolf & Mainardi, Francesco, 2000. "Fractional calculus and continuous-time finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 376-384.
    5. Sokolov, I.M. & Blumen, A. & Klafter, J., 2001. "Linear response in complex systems: CTRW and the fractional Fokker–Planck equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 302(1), pages 268-278.
    6. Aleksander Janicki, 1996. "Numerical and Statistical Approximation of Stochastic Differential Equations with Non-Gaussian Measures," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook9601, December.
    7. Piryatinska, A. & Saichev, A.I. & Woyczynski, W.A., 2005. "Models of anomalous diffusion: the subdiffusive case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 375-420.
    8. Hilfer, R., 2003. "On fractional diffusion and continuous time random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 35-40.
    9. ,, 2001. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 17(5), pages 1025-1031, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marjorie Hahn & Kei Kobayashi & Sabir Umarov, 2012. "SDEs Driven by a Time-Changed Lévy Process and Their Associated Time-Fractional Order Pseudo-Differential Equations," Journal of Theoretical Probability, Springer, vol. 25(1), pages 262-279, March.
    2. Agrawal, S.K. & Srivastava, M. & Das, S., 2012. "Synchronization of fractional order chaotic systems using active control method," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 737-752.
    3. Golder, J. & Joelson, M. & Néel, M.C., 2011. "Mass transport with sorption in porous media," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(10), pages 2181-2189.
    4. Hang Yu & Chenhui Zhu & Lu Yao & Yan Ma & Yang Ni & Shenkai Li & Huan Li & Yang Liu & Yuming Wang, 2023. "The Two Stage Moisture Diffusion Model for Non-Fickian Behaviors of 3D Woven Composite Exposed Based on Time Fractional Diffusion Equation," Mathematics, MDPI, vol. 11(5), pages 1-12, February.
    5. Villarroel, Javier & Montero, Miquel, 2009. "On properties of continuous-time random walks with non-Poissonian jump-times," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 128-137.
    6. Carlos Fuentes & Fernando Alcántara-López & Antonio Quevedo & Carlos Chávez, 2021. "Fractional Vertical Infiltration," Mathematics, MDPI, vol. 9(4), pages 1-14, February.
    7. Tawfik, Ashraf M. & Elkamash, I.S., 2022. "On the correlation between Kappa and Lévy stable distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 601(C).
    8. Javier Villarroel & Miquel Montero, 2008. "On properties of Continuous-Time Random Walks with Non-Poissonian jump-times," Papers 0812.2148, arXiv.org.
    9. Dexter Cahoy, 2012. "Moment estimators for the two-parameter M-Wright distribution," Computational Statistics, Springer, vol. 27(3), pages 487-497, September.
    10. Mura, A. & Taqqu, M.S. & Mainardi, F., 2008. "Non-Markovian diffusion equations and processes: Analysis and simulations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5033-5064.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torricelli, Lorenzo, 2020. "Trade duration risk in subdiffusive financial models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    2. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2008. "Triangular array limits for continuous time random walks," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1606-1633, September.
    3. Jaros{l}aw Klamut & Tomasz Gubiec, 2018. "Directed Continuous-Time Random Walk with memory," Papers 1807.01934, arXiv.org.
    4. Scalas, Enrico & Gallegati, Mauro & Guerci, Eric & Mas, David & Tedeschi, Alessandra, 2006. "Growth and allocation of resources in economics: The agent-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 86-90.
    5. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    6. Gu, Hui & Liang, Jin-Rong & Zhang, Yun-Xiu, 2012. "Time-changed geometric fractional Brownian motion and option pricing with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3971-3977.
    7. Ali Balcı, Mehmet, 2017. "Time fractional capital-induced labor migration model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 91-98.
    8. David, S.A. & Machado, J.A.T. & Quintino, D.D. & Balthazar, J.M., 2016. "Partial chaos suppression in a fractional order macroeconomic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 122(C), pages 55-68.
    9. Meerschaert, Mark M. & Mortensen, Jeff & Wheatcraft, Stephen W., 2006. "Fractional vector calculus for fractional advection–dispersion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 181-190.
    10. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    11. Scalas, Enrico, 2007. "Mixtures of compound Poisson processes as models of tick-by-tick financial data," Chaos, Solitons & Fractals, Elsevier, vol. 34(1), pages 33-40.
    12. Tarasov, Vasily E., 2020. "Fractional econophysics: Market price dynamics with memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    13. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2008. "Scaling in the distribution of intertrade durations of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5818-5825.
    14. Francesco Mainardi, 2020. "On the Advent of Fractional Calculus in Econophysics via Continuous-Time Random Walk," Mathematics, MDPI, vol. 8(4), pages 1-9, April.
    15. Vasily E. Tarasov & Valentina V. Tarasova, 2019. "Dynamic Keynesian Model of Economic Growth with Memory and Lag," Mathematics, MDPI, vol. 7(2), pages 1-17, February.
    16. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.
    17. Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Concept of dynamic memory in economics," Papers 1712.09088, arXiv.org.
    18. Enrico Scalas & Mauro Politi, 2012. "A parsimonious model for intraday European option pricing," Papers 1202.4332, arXiv.org.
    19. Sazuka, Naoya & Inoue, Jun-ichi & Scalas, Enrico, 2009. "The distribution of first-passage times and durations in FOREX and future markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2839-2853.
    20. Foad Shokrollahi, 2016. "Subdiffusive fractional Brownian motion regime for pricing currency options under transaction costs," Papers 1612.06665, arXiv.org, revised Aug 2017.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:34:y:2007:i:1:p:87-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.