IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i4p641-d348609.html
   My bibliography  Save this article

On the Advent of Fractional Calculus in Econophysics via Continuous-Time Random Walk

Author

Listed:
  • Francesco Mainardi

    (Department of Physics and Astronomy, University of Bologna, & The National Institute of Nuclear Physics (INFN), Via Irnerio 46, I-40126 Bologna, Italy)

Abstract

In this survey article, at first, the author describes how he was involved in the late 1990s on Econophysics, considered in those times an emerging science. Inside a group of colleagues the methods of the Fractional Calculus were developed to deal with the continuous-time random walks adopted to model the tick-by-tick dynamics of financial markets Then, the analytical results of this approach are presented pointing out the relevance of the Mittag-Leffler function. The consistence of the theoretical analysis is validated with fitting the survival probability for certain futures (BUND and BTP) traded in 1997 at LIFFE, London. Most of the theoretical and numerical results (including figures) reported in this paper were presented by the author at the first Nikkei symposium on Econophysics, held in Tokyo on November 2000 under the title “Empirical Science of Financial Fluctuations” on behalf of his colleagues and published by Springer. The author acknowledges Springer for the license permission of re-using this material.

Suggested Citation

  • Francesco Mainardi, 2020. "On the Advent of Fractional Calculus in Econophysics via Continuous-Time Random Walk," Mathematics, MDPI, vol. 8(4), pages 1-9, April.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:641-:d:348609
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/4/641/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/4/641/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    2. Scalas, Enrico & Gorenflo, Rudolf & Mainardi, Francesco, 2000. "Fractional calculus and continuous-time finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 376-384.
    3. Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bianca Reichert & Adriano Mendon a Souza, 2022. "Can the Heston Model Forecast Energy Generation? A Systematic Literature Review," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 289-295.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ponta, Linda & Trinh, Mailan & Raberto, Marco & Scalas, Enrico & Cincotti, Silvano, 2019. "Modeling non-stationarities in high-frequency financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 173-196.
    2. Repetowicz, Przemysław & Richmond, Peter, 2004. "Modeling of waiting times and price changes in currency exchange data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 677-693.
    3. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    4. Jean-Philippe Aguilar & Jan Korbel & Yuri Luchko, 2019. "Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations," Mathematics, MDPI, vol. 7(9), pages 1-23, September.
    5. Scalas, Enrico & Gallegati, Mauro & Guerci, Eric & Mas, David & Tedeschi, Alessandra, 2006. "Growth and allocation of resources in economics: The agent-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 86-90.
    6. Foad Shokrollahi, 2016. "Subdiffusive fractional Brownian motion regime for pricing currency options under transaction costs," Papers 1612.06665, arXiv.org, revised Aug 2017.
    7. D’Amico, Guglielmo & Janssen, Jacques & Manca, Raimondo, 2009. "European and American options: The semi-Markov case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(15), pages 3181-3194.
    8. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    9. Gu, Hui & Liang, Jin-Rong & Zhang, Yun-Xiu, 2012. "Time-changed geometric fractional Brownian motion and option pricing with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3971-3977.
    10. Ali Balcı, Mehmet, 2017. "Time fractional capital-induced labor migration model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 91-98.
    11. Masoliver, Jaume & Montero, Miquel & Perello, Josep & Weiss, George H., 2006. "The continuous time random walk formalism in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 61(4), pages 577-598, December.
    12. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.
    13. Kuroda, Koji & Murai, Joshin, 2007. "Limit theorems in financial market models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 28-34.
    14. Scalas, Enrico & Politi, Mauro, 2012. "A parsimonious model for intraday European option pricing," Economics Discussion Papers 2012-14, Kiel Institute for the World Economy (IfW Kiel).
    15. Masanao Aoki, 2008. "Growth Patterns of Two Types of Macro-Models: Limiting Behavior of One- and Two-Parameter Poisson–Dirichlet Models," Chapters, in: Roger E.A. Farmer (ed.), Macroeconomics in the Small and the Large, chapter 6, Edward Elgar Publishing.
    16. David, S.A. & Machado, J.A.T. & Quintino, D.D. & Balthazar, J.M., 2016. "Partial chaos suppression in a fractional order macroeconomic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 122(C), pages 55-68.
    17. Scalas, Enrico, 2007. "Mixtures of compound Poisson processes as models of tick-by-tick financial data," Chaos, Solitons & Fractals, Elsevier, vol. 34(1), pages 33-40.
    18. Miccichè, S., 2016. "Understanding the determinants of volatility clustering in terms of stationary Markovian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 186-197.
    19. Tarasov, Vasily E., 2020. "Fractional econophysics: Market price dynamics with memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    20. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2008. "Scaling in the distribution of intertrade durations of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5818-5825.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:641-:d:348609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.