IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1807.01934.html
   My bibliography  Save this paper

Directed Continuous-Time Random Walk with memory

Author

Listed:
  • Jaros{l}aw Klamut
  • Tomasz Gubiec

Abstract

We propose a new Directed Continuous-Time Random Walk (CTRW) model with memory. As CTRW trajectory consists of spatial jumps preceded by waiting times, in Directed CTRW, we consider the case with only positive spatial jumps. Moreover, we consider the memory in the model as each spatial jump depends on the previous one. Our model is motivated by the financial application of the CTRW presented in [Phys. Rev. E 82:046119][Eur. Phys. J. B 90:50]. As CTRW can successfully describe the short term negative autocorrelation of returns in high-frequency financial data (caused by the bid-ask bounce phenomena), we asked ourselves to what extent the observed long-term autocorrelation of absolute values of returns can be explained by the same phenomena. It turned out that the bid-ask bounce can be responsible only for the small fraction of the memory observed in the high-frequency financial data.

Suggested Citation

  • Jaros{l}aw Klamut & Tomasz Gubiec, 2018. "Directed Continuous-Time Random Walk with memory," Papers 1807.01934, arXiv.org.
  • Handle: RePEc:arx:papers:1807.01934
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1807.01934
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    2. Masoliver, Jaume & Montero, Miquel & Perelló, Josep & Weiss, George H., 2007. "The CTRW in finance: Direct and inverse problems with some generalizations and extensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 151-167.
    3. J. Perello & J. Masoliver & A. Kasprzak & R. Kutner, 2008. "A model for interevent times with long tails and multifractality in human communications: An application to financial trading," Papers 0805.1353, arXiv.org, revised Jul 2008.
    4. Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.
    5. Tomasz Gubiec & Ryszard Kutner, 2017. "Continuous-Time Random Walk with multi-step memory: an application to market dynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(11), pages 1-15, November.
    6. Miquel Montero, 2011. "Parrondo-like behavior in continuous-time random walks with memory," Papers 1107.2346, arXiv.org, revised Nov 2011.
    7. Enrico Scalas, 2006. "Five Years of Continuous-time Random Walks in Econophysics," Lecture Notes in Economics and Mathematical Systems, in: Akira Namatame & Taisei Kaizouji & Yuuji Aruka (ed.), The Complex Networks of Economic Interactions, pages 3-16, Springer.
    8. Scalas, Enrico & Gorenflo, Rudolf & Mainardi, Francesco, 2000. "Fractional calculus and continuous-time finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 376-384.
    9. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    10. A. Kasprzak & R. Kutner & J. Perelló & J. Masoliver, 2010. "Higher-order phase transitions on financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 76(4), pages 513-527, August.
    11. D. Brockmann & L. Hufnagel & T. Geisel, 2006. "The scaling laws of human travel," Nature, Nature, vol. 439(7075), pages 462-465, January.
    12. Hasbrouck, Joel, 2007. "Empirical Market Microstructure: The Institutions, Economics, and Econometrics of Securities Trading," OUP Catalogue, Oxford University Press, number 9780195301649.
    13. Masoliver, Jaume & Montero, Miquel & Perello, Josep & Weiss, George H., 2006. "The continuous time random walk formalism in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 61(4), pages 577-598, December.
    14. Jaume Masoliver & Miquel Montero & George H. Weiss, 2002. "A continuous time random walk model for financial distributions," Papers cond-mat/0210513, arXiv.org.
    15. Raberto, Marco & Scalas, Enrico & Mainardi, Francesco, 2002. "Waiting-times and returns in high-frequency financial data: an empirical study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 749-755.
    16. R. Kutner & F. Switała, 2003. "Stochastic simulations of time series within Weierstrass-Mandelbrot walks," Quantitative Finance, Taylor & Francis Journals, vol. 3(3), pages 201-211.
    17. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    18. Hilfer, R., 2003. "On fractional diffusion and continuous time random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 35-40.
    19. Ryszard Kutner & Jaume Masoliver, 2017. "The continuous time random walk, still trendy: fifty-year history, state of art and outlook," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(3), pages 1-13, March.
    20. Gubiec, T. & Wiliński, M., 2015. "Intra-day variability of the stock market activity versus stationarity of the financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 216-221.
    21. Repetowicz, Przemysław & Richmond, Peter, 2004. "Modeling share price evolution as a continuous time random walk (CTRW) with non-independent price changes and waiting times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 108-111.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ponta, Linda & Trinh, Mailan & Raberto, Marco & Scalas, Enrico & Cincotti, Silvano, 2019. "Modeling non-stationarities in high-frequency financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 173-196.
    2. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    3. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    4. Schumer, Rina & Baeumer, Boris & Meerschaert, Mark M., 2011. "Extremal behavior of a coupled continuous time random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(3), pages 505-511.
    5. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    6. Enrico Scalas & Rudolf Gorenflo & Hugh Luckock & Francesco Mainardi & Maurizio Mantelli & Marco Raberto, 2004. "Anomalous waiting times in high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 695-702.
    7. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.
    8. D’Amico, Guglielmo & Janssen, Jacques & Manca, Raimondo, 2009. "European and American options: The semi-Markov case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(15), pages 3181-3194.
    9. Plamen Ch Ivanov & Ainslie Yuen & Pandelis Perakakis, 2014. "Impact of Stock Market Structure on Intertrade Time and Price Dynamics," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-14, April.
    10. Masoliver, Jaume & Montero, Miquel & Perello, Josep & Weiss, George H., 2006. "The continuous time random walk formalism in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 61(4), pages 577-598, December.
    11. Scalas, Enrico & Viles, Noèlia, 2014. "A functional limit theorem for stochastic integrals driven by a time-changed symmetric α-stable Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 385-410.
    12. Enrico Scalas, 2006. "Five Years of Continuous-time Random Walks in Econophysics," Lecture Notes in Economics and Mathematical Systems, in: Akira Namatame & Taisei Kaizouji & Yuuji Aruka (ed.), The Complex Networks of Economic Interactions, pages 3-16, Springer.
    13. Tarasov, Vasily E., 2020. "Fractional econophysics: Market price dynamics with memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    14. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2008. "Scaling in the distribution of intertrade durations of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5818-5825.
    15. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    16. Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Concept of dynamic memory in economics," Papers 1712.09088, arXiv.org.
    17. Sazuka, Naoya & Inoue, Jun-ichi & Scalas, Enrico, 2009. "The distribution of first-passage times and durations in FOREX and future markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2839-2853.
    18. Gubiec, T. & Wiliński, M., 2015. "Intra-day variability of the stock market activity versus stationarity of the financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 216-221.
    19. Scalas, Enrico & Gallegati, Mauro & Guerci, Eric & Mas, David & Tedeschi, Alessandra, 2006. "Growth and allocation of resources in economics: The agent-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 86-90.
    20. Villarroel, Javier & Montero, Miquel, 2009. "On properties of continuous-time random walks with non-Poissonian jump-times," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 128-137.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1807.01934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.