IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v27y2012i3p487-497.html
   My bibliography  Save this article

Moment estimators for the two-parameter M-Wright distribution

Author

Listed:
  • Dexter Cahoy

Abstract

A formal parameter estimation procedure for the two-parameter M-Wright distribution is proposed. This procedure is necessary to make the model useful for real-world applications. Note that its generalization of the Gaussian density makes the M-Wright distribution appealing to practitioners. Closed-form estimators are also derived from the moments of the log-transformed M-Wright distributed random variable, and are shown to be asymptotically normal. Tests using simulated data indicated favorable results for our estimation procedure. Copyright Springer-Verlag 2012

Suggested Citation

  • Dexter Cahoy, 2012. "Moment estimators for the two-parameter M-Wright distribution," Computational Statistics, Springer, vol. 27(3), pages 487-497, September.
  • Handle: RePEc:spr:compst:v:27:y:2012:i:3:p:487-497
    DOI: 10.1007/s00180-011-0269-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-011-0269-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-011-0269-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gorenflo, Rudolf & Mainardi, Francesco & Vivoli, Alessandro, 2007. "Continuous-time random walk and parametric subordination in fractional diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 34(1), pages 87-103.
    2. Guido Germano & Mauro Politi & Enrico Scalas & Ren'e L. Schilling, 2008. "Stochastic calculus for uncoupled continuous-time random walks," Papers 0802.3769, arXiv.org, revised Jan 2009.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schumer, Rina & Baeumer, Boris & Meerschaert, Mark M., 2011. "Extremal behavior of a coupled continuous time random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(3), pages 505-511.
    2. Golder, J. & Joelson, M. & Néel, M.C., 2011. "Mass transport with sorption in porous media," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(10), pages 2181-2189.
    3. Frank Marten & Krasimira Tsaneva-Atanasova & Luca Giuggioli, 2012. "Bacterial Secretion and the Role of Diffusive and Subdiffusive First Passage Processes," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    4. Villarroel, Javier & Montero, Miquel, 2009. "On properties of continuous-time random walks with non-Poissonian jump-times," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 128-137.
    5. Mura, A. & Taqqu, M.S. & Mainardi, F., 2008. "Non-Markovian diffusion equations and processes: Analysis and simulations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5033-5064.
    6. Álvaro Cartea, 2013. "Derivatives pricing with marked point processes using tick-by-tick data," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 111-123, January.
    7. Scalas, Enrico & Viles, Noèlia, 2014. "A functional limit theorem for stochastic integrals driven by a time-changed symmetric α-stable Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 385-410.
    8. Hang Yu & Chenhui Zhu & Lu Yao & Yan Ma & Yang Ni & Shenkai Li & Huan Li & Yang Liu & Yuming Wang, 2023. "The Two Stage Moisture Diffusion Model for Non-Fickian Behaviors of 3D Woven Composite Exposed Based on Time Fractional Diffusion Equation," Mathematics, MDPI, vol. 11(5), pages 1-12, February.
    9. Guoxing Lin, 2018. "Analysis of PFG Anomalous Diffusion via Real-Space and Phase-Space Approaches," Mathematics, MDPI, vol. 6(2), pages 1-16, January.
    10. Javier Villarroel & Miquel Montero, 2008. "On properties of Continuous-Time Random Walks with Non-Poissonian jump-times," Papers 0812.2148, arXiv.org.
    11. Agrawal, S.K. & Srivastava, M. & Das, S., 2012. "Synchronization of fractional order chaotic systems using active control method," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 737-752.
    12. Tawfik, Ashraf M. & Elkamash, I.S., 2022. "On the correlation between Kappa and Lévy stable distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 601(C).
    13. Chen, Zhen-Qing & Kim, Kyeong-Hun & Kim, Panki, 2015. "Fractional time stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1470-1499.
    14. Marjorie Hahn & Kei Kobayashi & Sabir Umarov, 2012. "SDEs Driven by a Time-Changed Lévy Process and Their Associated Time-Fractional Order Pseudo-Differential Equations," Journal of Theoretical Probability, Springer, vol. 25(1), pages 262-279, March.
    15. Carlos Fuentes & Fernando Alcántara-López & Antonio Quevedo & Carlos Chávez, 2021. "Fractional Vertical Infiltration," Mathematics, MDPI, vol. 9(4), pages 1-14, February.
    16. Straka, Peter, 2018. "Variable order fractional Fokker–Planck equations derived from Continuous Time Random Walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 451-463.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:27:y:2012:i:3:p:487-497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.