IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i1p128-137.html
   My bibliography  Save this article

On properties of continuous-time random walks with non-Poissonian jump-times

Author

Listed:
  • Villarroel, Javier
  • Montero, Miquel

Abstract

The usual development of the continuous-time random walk (CTRW) proceeds by assuming that the present is one of the jumping times. Under this restrictive assumption integral equations for the propagator and mean escape times have been derived. We generalize these results to the case when the present is an arbitrary time by recourse to renewal theory. The case of Erlang distributed times is analyzed in detail. Several concrete examples are considered.

Suggested Citation

  • Villarroel, Javier & Montero, Miquel, 2009. "On properties of continuous-time random walks with non-Poissonian jump-times," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 128-137.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:1:p:128-137
    DOI: 10.1016/j.chaos.2008.11.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908005171
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.11.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    2. Gorenflo, Rudolf & Mainardi, Francesco & Vivoli, Alessandro, 2007. "Continuous-time random walk and parametric subordination in fractional diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 34(1), pages 87-103.
    3. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    4. Balescu, R., 2007. "V-Langevin equations, continuous time random walks and fractional diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 34(1), pages 62-80.
    5. Miquel Montero & Josep Perello & Jaume Masoliver & Fabrizio Lillo & Salvatore Micciche & Rosario N. Mantegna, 2005. "Scaling and data collapse for the mean exit time of asset prices," Papers physics/0507054, arXiv.org.
    6. Masoliver, Jaume & Montero, Miquel & Perello, Josep & Weiss, George H., 2006. "The continuous time random walk formalism in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 61(4), pages 577-598, December.
    7. Jaume Masoliver & Miquel Montero & George H. Weiss, 2002. "A continuous time random walk model for financial distributions," Papers cond-mat/0210513, arXiv.org.
    8. R. Kutner & F. Switała, 2003. "Stochastic simulations of time series within Weierstrass-Mandelbrot walks," Quantitative Finance, Taylor & Francis Journals, vol. 3(3), pages 201-211.
    9. Jaume Masoliver & Miquel Montero & Josep Perello, 2004. "Extreme times in financial markets," Papers cond-mat/0406556, arXiv.org.
    10. Dickson, David C. M. & Hipp, Christian, 2001. "On the time to ruin for Erlang(2) risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 333-344, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Villarroel & Miquel Montero, 2008. "On properties of Continuous-Time Random Walks with Non-Poissonian jump-times," Papers 0812.2148, arXiv.org.
    2. Jaros{l}aw Klamut & Tomasz Gubiec, 2018. "Directed Continuous-Time Random Walk with memory," Papers 1807.01934, arXiv.org.
    3. Masoliver, Jaume & Montero, Miquel & Perello, Josep & Weiss, George H., 2006. "The continuous time random walk formalism in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 61(4), pages 577-598, December.
    4. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.
    5. Sazuka, Naoya & Inoue, Jun-ichi & Scalas, Enrico, 2009. "The distribution of first-passage times and durations in FOREX and future markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2839-2853.
    6. Schumer, Rina & Baeumer, Boris & Meerschaert, Mark M., 2011. "Extremal behavior of a coupled continuous time random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(3), pages 505-511.
    7. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    8. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    9. Enrico Scalas & Rudolf Gorenflo & Hugh Luckock & Francesco Mainardi & Maurizio Mantelli & Marco Raberto, 2004. "Anomalous waiting times in high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 695-702.
    10. Lv, Longjin & Xiao, Jianbin & Fan, Liangzhong & Ren, Fuyao, 2016. "Correlated continuous time random walk and option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 100-107.
    11. Scalas, Enrico & Viles, Noèlia, 2014. "A functional limit theorem for stochastic integrals driven by a time-changed symmetric α-stable Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 385-410.
    12. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    13. Vallois, Pierre & Tapiero, Charles S., 2007. "Memory-based persistence in a counting random walk process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 303-317.
    14. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2008. "Scaling in the distribution of intertrade durations of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5818-5825.
    15. Enrico Scalas & Mauro Politi, 2012. "A parsimonious model for intraday European option pricing," Papers 1202.4332, arXiv.org.
    16. Zoltan Eisler & Janos Kertesz & Fabrizio Lillo & Rosario Mantegna, 2009. "Diffusive behavior and the modeling of characteristic times in limit order executions," Quantitative Finance, Taylor & Francis Journals, vol. 9(5), pages 547-563.
    17. Ponta, Linda & Trinh, Mailan & Raberto, Marco & Scalas, Enrico & Cincotti, Silvano, 2019. "Modeling non-stationarities in high-frequency financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 173-196.
    18. Miquel Montero, 2021. "Predator–prey model for stock market fluctuations," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(1), pages 29-57, January.
    19. Jaume Masoliver & Miquel Montero & Josep Perelló, 2021. "Jump-Diffusion Models for Valuing the Future: Discounting under Extreme Situations," Mathematics, MDPI, vol. 9(14), pages 1-26, July.
    20. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:1:p:128-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.