IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v31y2007i3p736-746.html
   My bibliography  Save this article

Chaos game representation of the Dst index and prediction of geomagnetic storm events

Author

Listed:
  • Yu, Z.G.
  • Anh, V.V.
  • Wanliss, J.A.
  • Watson, S.M.

Abstract

This paper proposes a two-dimensional chaos game representation (CGR) for the Dst index. The CGR provides an effective method to characterize the multifractality of the Dst time series. The probability measure of this representation is then modeled as a recurrent iterated function system in fractal theory, which leads to an algorithm for prediction of a storm event. We present an analysis and modeling of the Dst time series over the period 1963–2003. The numerical results obtained indicate that the method is useful in predicting storm events one day ahead.

Suggested Citation

  • Yu, Z.G. & Anh, V.V. & Wanliss, J.A. & Watson, S.M., 2007. "Chaos game representation of the Dst index and prediction of geomagnetic storm events," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 736-746.
  • Handle: RePEc:eee:chsofr:v:31:y:2007:i:3:p:736-746
    DOI: 10.1016/j.chaos.2005.12.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906000853
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.12.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antoine Ayache & Jacques Vehel, 2000. "The Generalized Multifractional Brownian Motion," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 7-18, January.
    2. Tél, Tamás & Fülöp, Ágnes & Vicsek, Tamás, 1989. "Determination of fractal dimensions for geometrical multifractals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 159(2), pages 155-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Bao-Gen & Ling, Dian-Yi & Yu, Zu-Guo, 2021. "Multifractal temporally weighted detrended partial cross-correlation analysis of two non-stationary time series affected by common external factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    2. Zhou, Qian & Yu, Yong-ming, 2014. "Comparative analysis of bacterial essential and nonessential genes with Hurst exponent based on chaos game representation," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 209-216.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayache, Antoine & Lévy Véhel, Jacques, 2004. "On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 119-156, May.
    2. Loosveldt, L., 2023. "Multifractional Hermite processes: Definition and first properties," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 465-500.
    3. Garcin, Matthieu, 2017. "Estimation of time-dependent Hurst exponents with variational smoothing and application to forecasting foreign exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 462-479.
    4. Alison K. Cheeseman & Edward R. Vrscay, 2022. "Estimating the Fractal Dimensions of Vascular Networks and Other Branching Structures: Some Words of Caution," Mathematics, MDPI, vol. 10(5), pages 1-21, March.
    5. Retière, N. & Sidqi, Y. & Frankhauser, P., 2022. "A steady-state analysis of distribution networks by diffusion-limited-aggregation and multifractal geometry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    6. Dai, Hongshuai & Li, Yuqiang, 2010. "A weak limit theorem for generalized multifractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 348-356, March.
    7. Yuxin Zhao & Shuai Chang & Chang Liu, 2015. "Multifractal theory with its applications in data management," Annals of Operations Research, Springer, vol. 234(1), pages 133-150, November.
    8. Pavón-Domínguez, P. & Rincón-Casado, A. & Ruiz, P. & Camacho-Magriñán, P., 2018. "Multifractal approach for comparing road transport network geometry: The case of Spain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 678-690.
    9. Huang, Da-Wen & Yu, Zu-Guo & Anh, Vo, 2017. "Multifractal analysis and topological properties of a new family of weighted Koch networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 695-705.
    10. Cadoni, Marinella & Melis, Roberta & Trudda, Alessandro, 2017. "Pension funds rules: Paradoxes in risk control," Finance Research Letters, Elsevier, vol. 22(C), pages 20-29.
    11. Biermé, Hermine & Lacaux, Céline & Scheffler, Hans-Peter, 2011. "Multi-operator scaling random fields," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2642-2677, November.
    12. Pavón-Domínguez, Pablo & Moreno-Pulido, Soledad, 2022. "Sandbox fixed-mass algorithm for multifractal unweighted complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    13. Mendy, Ibrahima, 2012. "The two-parameter Volterra multifractional process," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2115-2124.
    14. François Sémécurbe & Cécile Tannier & Stéphane G. Roux, 2019. "Applying two fractal methods to characterise the local and global deviations from scale invariance of built patterns throughout mainland France," Journal of Geographical Systems, Springer, vol. 21(2), pages 271-293, June.
    15. K. J. Falconer & J. Lévy Véhel, 2009. "Multifractional, Multistable, and Other Processes with Prescribed Local Form," Journal of Theoretical Probability, Springer, vol. 22(2), pages 375-401, June.
    16. Surgailis, Donatas, 2008. "Nonhomogeneous fractional integration and multifractional processes," Stochastic Processes and their Applications, Elsevier, vol. 118(2), pages 171-198, February.
    17. Dailyudenko, Victor F., 2008. "Topological considerations of an attractor based on temporal locality along its phase trajectories," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 876-893.
    18. M. D. Ruiz-Medina & V. V. Anh & R. M. Espejo & J. M. Angulo & M. P. Frías, 2015. "Least-Squares Estimation of Multifractional Random Fields in a Hilbert-Valued Context," Journal of Optimization Theory and Applications, Springer, vol. 167(3), pages 888-911, December.
    19. Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    20. Golay, Jean & Kanevski, Mikhail & Vega Orozco, Carmen D. & Leuenberger, Michael, 2014. "The multipoint Morisita index for the analysis of spatial patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 191-202.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:31:y:2007:i:3:p:736-746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.