IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v69y2014icp209-216.html
   My bibliography  Save this article

Comparative analysis of bacterial essential and nonessential genes with Hurst exponent based on chaos game representation

Author

Listed:
  • Zhou, Qian
  • Yu, Yong-ming

Abstract

Essential genes are indispensable for the survival of an organism. Investigating features associated with gene essentiality is fundamental to the prediction and identification of essential genes with computational techniques. We use fractal theory approach to make comparative analysis of essential and nonessential genes in bacteria. The Hurst exponents of essential genes and nonessential genes available in the DEG database for 27 bacteria are calculated based on their gene chaos game representations. It is found that for most analyzed bacteria, weak negative correlation exists between Hurst exponent and gene length. Moreover, essential genes generally differ from nonessential genes in their Hurst exponent. For genes of similar length, the average Hurst exponent of essential genes is smaller than that of nonessential genes. The results of our work reveal that gene Hurst exponent is very probably useful gene feature for the algorithm predicting essential genes.

Suggested Citation

  • Zhou, Qian & Yu, Yong-ming, 2014. "Comparative analysis of bacterial essential and nonessential genes with Hurst exponent based on chaos game representation," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 209-216.
  • Handle: RePEc:eee:chsofr:v:69:y:2014:i:c:p:209-216
    DOI: 10.1016/j.chaos.2014.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007791400174X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2014.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Z.G. & Anh, V.V. & Wanliss, J.A. & Watson, S.M., 2007. "Chaos game representation of the Dst index and prediction of geomagnetic storm events," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 736-746.
    2. Su, Zhi-Yuan & Wu, Tzuyin & Wang, Shu-Yin, 2009. "Local scaling and multifractal spectrum analyses of DNA sequences – GenBank data analysis," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1750-1765.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Qian & Qi, Saibing & Ren, Cong, 2021. "Gene essentiality prediction based on chaos game representation and spiking neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Bao-Gen & Ling, Dian-Yi & Yu, Zu-Guo, 2021. "Multifractal temporally weighted detrended partial cross-correlation analysis of two non-stationary time series affected by common external factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    2. Chauveau, Julien & Rousseau, David & Richard, Paul & Chapeau-Blondeau, François, 2010. "Multifractal analysis of three-dimensional histogram from color images," Chaos, Solitons & Fractals, Elsevier, vol. 43(1), pages 57-67.
    3. Rupel Nargunam & Ananya Lahiri, 2022. "Persistence in daily returns of stocks with highest market capitalization in the Indian market," Digital Finance, Springer, vol. 4(4), pages 341-374, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:69:y:2014:i:c:p:209-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.