IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v159y1989i2p155-166.html
   My bibliography  Save this article

Determination of fractal dimensions for geometrical multifractals

Author

Listed:
  • Tél, Tamás
  • Fülöp, Ágnes
  • Vicsek, Tamás

Abstract

Two independent approaches, the box counting and the sand box methods are used for the determination of the generalized dimensions (Dq) associated with the geometrical structure of growing deterministic fractals. We find that the multifractal nature of the geometry results in an unusually slow convergence of the numerically calculated Dq's to their true values. Our study demonstrates that the above-mentioned two methods are equivalent only if the sand box method is applied with an averaging over randomly selected centres. In this case the latter approach provides better estimates of the generalized dimensions.

Suggested Citation

  • Tél, Tamás & Fülöp, Ágnes & Vicsek, Tamás, 1989. "Determination of fractal dimensions for geometrical multifractals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 159(2), pages 155-166.
  • Handle: RePEc:eee:phsmap:v:159:y:1989:i:2:p:155-166
    DOI: 10.1016/0378-4371(89)90563-3
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437189905633
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(89)90563-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Z.G. & Anh, V.V. & Wanliss, J.A. & Watson, S.M., 2007. "Chaos game representation of the Dst index and prediction of geomagnetic storm events," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 736-746.
    2. Pavón-Domínguez, Pablo & Moreno-Pulido, Soledad, 2020. "A Fixed-Mass multifractal approach for unweighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    3. Golay, Jean & Kanevski, Mikhail & Vega Orozco, Carmen D. & Leuenberger, Michael, 2014. "The multipoint Morisita index for the analysis of spatial patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 191-202.
    4. Kanevski, Mikhail & Pereira, Mário G., 2017. "Local fractality: The case of forest fires in Portugal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 400-410.
    5. Alison K. Cheeseman & Edward R. Vrscay, 2022. "Estimating the Fractal Dimensions of Vascular Networks and Other Branching Structures: Some Words of Caution," Mathematics, MDPI, vol. 10(5), pages 1-21, March.
    6. Yuxin Zhao & Shuai Chang & Chang Liu, 2015. "Multifractal theory with its applications in data management," Annals of Operations Research, Springer, vol. 234(1), pages 133-150, November.
    7. Pavón-Domínguez, P. & Rincón-Casado, A. & Ruiz, P. & Camacho-Magriñán, P., 2018. "Multifractal approach for comparing road transport network geometry: The case of Spain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 678-690.
    8. Pavón-Domínguez, Pablo & Moreno-Pulido, Soledad, 2022. "Sandbox fixed-mass algorithm for multifractal unweighted complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    9. Huang, Da-Wen & Yu, Zu-Guo & Anh, Vo, 2017. "Multifractal analysis and topological properties of a new family of weighted Koch networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 695-705.
    10. Retière, N. & Sidqi, Y. & Frankhauser, P., 2022. "A steady-state analysis of distribution networks by diffusion-limited-aggregation and multifractal geometry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    11. Dailyudenko, Victor F., 2008. "Topological considerations of an attractor based on temporal locality along its phase trajectories," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 876-893.
    12. François Sémécurbe & Cécile Tannier & Stéphane G. Roux, 2019. "Applying two fractal methods to characterise the local and global deviations from scale invariance of built patterns throughout mainland France," Journal of Geographical Systems, Springer, vol. 21(2), pages 271-293, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:159:y:1989:i:2:p:155-166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.