Nonhomogeneous fractional integration and multifractional processes
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ayache, Antoine & Lévy Véhel, Jacques, 2004. "On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 119-156, May.
- Antoine Ayache & Jacques Vehel, 2000. "The Generalized Multifractional Brownian Motion," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 7-18, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Loosveldt, L., 2023. "Multifractional Hermite processes: Definition and first properties," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 465-500.
- Bardet, Jean-Marc & Surgailis, Donatas, 2013. "Nonparametric estimation of the local Hurst function of multifractional Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 1004-1045.
- Aloy Marcel & Dufrénot Gilles & Tong Charles Lai & Peguin-Feissolle Anne, 2013.
"A smooth transition long-memory model,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(3), pages 281-296, May.
- Marcel Aloy & Gilles Dufrenot & Charles Lai-Tong & Anne Peguin-Feissolle, 2012. "A Smooth Transition Long-Memory Model," Working Papers halshs-00793680, HAL.
- Marcel Aloy & Gilles Dufrénot & Charles Lai-Tong & Anne Peguin-Feissolle, 2013. "A smooth transition long-memory model," Post-Print hal-01498270, HAL.
- Marcel Aloy & Gilles Dufrénot & Charles Lai Tong & Anne Péguin-Feissolle, 2012. "A Smooth Transition Long-Memory Model," AMSE Working Papers 1240, Aix-Marseille School of Economics, France, revised Dec 2012.
- Loboda, Dennis & Mies, Fabian & Steland, Ansgar, 2021. "Regularity of multifractional moving average processes with random Hurst exponent," Stochastic Processes and their Applications, Elsevier, vol. 140(C), pages 21-48.
- Antoine Ayache, 2013. "Continuous Gaussian Multifractional Processes with Random Pointwise Hölder Regularity," Journal of Theoretical Probability, Springer, vol. 26(1), pages 72-93, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
- Mendy, Ibrahima, 2012. "The two-parameter Volterra multifractional process," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2115-2124.
- M. D. Ruiz-Medina & V. V. Anh & R. M. Espejo & J. M. Angulo & M. P. Frías, 2015. "Least-Squares Estimation of Multifractional Random Fields in a Hilbert-Valued Context," Journal of Optimization Theory and Applications, Springer, vol. 167(3), pages 888-911, December.
- Ayache, Antoine & Lévy Véhel, Jacques, 2004. "On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 119-156, May.
- Vu, Huong T.L. & Richard, Frédéric J.P., 2020. "Statistical tests of heterogeneity for anisotropic multifractional Brownian fields," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4667-4692.
- Loosveldt, L., 2023. "Multifractional Hermite processes: Definition and first properties," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 465-500.
- Pawe{l} O'swik{e}cimka & Stanis{l}aw Dro.zd.z & Mattia Frasca & Robert Gk{e}barowski & Natsue Yoshimura & Luciano Zunino & Ludovico Minati, 2020. "Wavelet-based discrimination of isolated singularities masquerading as multifractals in detrended fluctuation analyses," Papers 2004.03319, arXiv.org.
- Peng, Qidi, 2011. "Uniform Hölder exponent of a stationary increments Gaussian process: Estimation starting from average values," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1326-1335, August.
- Frezza, Massimiliano, 2014. "Goodness of fit assessment for a fractal model of stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 66(C), pages 41-50.
- Garcin, Matthieu, 2017. "Estimation of time-dependent Hurst exponents with variational smoothing and application to forecasting foreign exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 462-479.
- Zunino, L. & Pérez, D.G. & Garavaglia, M. & Rosso, Osvaldo A., 2006. "Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform: Dynamic study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 79-86.
- K. J. Falconer & J. Lévy Véhel, 2009. "Multifractional, Multistable, and Other Processes with Prescribed Local Form," Journal of Theoretical Probability, Springer, vol. 22(2), pages 375-401, June.
- Wang, Xiao-Tian, 2011. "Scaling and long-range dependence in option pricing V: Multiscaling hedging and implied volatility smiles under the fractional Black–Scholes model with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1623-1634.
- Bardet, Jean-Marc & Surgailis, Donatas, 2013. "Nonparametric estimation of the local Hurst function of multifractional Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 1004-1045.
- Sixian Jin & Qidi Peng & Henry Schellhorn, 2018. "Estimation of the pointwise Hölder exponent of hidden multifractional Brownian motion using wavelet coefficients," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 113-140, April.
- Frezza, Massimiliano, 2012. "Modeling the time-changing dependence in stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 45(12), pages 1510-1520.
- Peng, Qidi & Zhao, Ran, 2018. "A general class of multifractional processes and stock price informativeness," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 248-267.
- Cadoni, Marinella & Melis, Roberta & Trudda, Alessandro, 2017. "Pension funds rules: Paradoxes in risk control," Finance Research Letters, Elsevier, vol. 22(C), pages 20-29.
- Wang, Xiao-Tian, 2010. "Scaling and long range dependence in option pricing, IV: Pricing European options with transaction costs under the multifractional Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 789-796.
- Xiong, Gang & Yu, Wenxian & Zhang, Shuning, 2015. "Singularity power spectrum distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 431(C), pages 63-73.
More about this item
Keywords
Liouville fractional operators Long-range dependence Multifractional Brownian motion Nonhomogeneous fractional integration Scaling limits;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:118:y:2008:i:2:p:171-198. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.