IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v406y2014icp191-202.html
   My bibliography  Save this article

The multipoint Morisita index for the analysis of spatial patterns

Author

Listed:
  • Golay, Jean
  • Kanevski, Mikhail
  • Vega Orozco, Carmen D.
  • Leuenberger, Michael

Abstract

In many fields, the spatial clustering of sampled data points has significant consequences. Therefore, several indices have been proposed to assess the degree of clustering affecting datasets (e.g. the Morisita index, Ripley’s K-function and Rényi’s information). The classical Morisita index measures how many times it is more likely to randomly select two sampled points from the same quadrat (the dataset is covered by a regular grid of changing size) than it would be in the case of a random distribution generated from a Poisson process. The multipoint version takes into account m points with m≥2. The present research deals with a new development of the multipoint Morisita index (m-Morisita) which is directly related to multifractality. This relationship to multifractality is first demonstrated and highlighted on a mathematical multifractal set. Then, the new version of the m-Morisita index is adapted to the characterization of environmental monitoring network clustering. And, finally, an additional extension, the functional m-Morisita index, is presented for the detection of structures in monitored phenomena.

Suggested Citation

  • Golay, Jean & Kanevski, Mikhail & Vega Orozco, Carmen D. & Leuenberger, Michael, 2014. "The multipoint Morisita index for the analysis of spatial patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 191-202.
  • Handle: RePEc:eee:phsmap:v:406:y:2014:i:c:p:191-202
    DOI: 10.1016/j.physa.2014.03.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114002659
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.03.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julian Besag & Peter J. Diggle, 1977. "Simple Monte Carlo Tests for Spatial Pattern," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 26(3), pages 327-333, November.
    2. Tél, Tamás & Fülöp, Ágnes & Vicsek, Tamás, 1989. "Determination of fractal dimensions for geometrical multifractals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 159(2), pages 155-166.
    3. Baddeley, Adrian & Turner, Rolf, 2005. "spatstat: An R Package for Analyzing Spatial Point Patterns," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i06).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Telesca, Luciano & Golay, Jean & Kanevski, Mikhail, 2015. "Morisita-based space-clustering analysis of Swiss seismicity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 40-47.
    2. Kanevski, Mikhail & Pereira, Mário G., 2017. "Local fractality: The case of forest fires in Portugal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 400-410.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zack W. Almquist & Carter T. Butts, 2012. "Point process models for household distributions within small areal units," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 26(22), pages 593-632.
    2. Davidson, Marty, 2024. "Strategic Point Processes," OSF Preprints g5r9t, Center for Open Science.
    3. Christian Wehenkel & João Marcelo Brazão-Protázio & Artemio Carrillo-Parra & José Hugo Martínez-Guerrero & Felipe Crecente-Campo, 2015. "Spatial Distribution Patterns in the Very Rare and Species-Rich Picea chihuahuana Tree Community (Mexico)," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-19, October.
    4. Arii, Ken & Caspersen, John P. & Jones, Trevor A. & Thomas, Sean C., 2008. "A selection harvesting algorithm for use in spatially explicit individual-based forest simulation models," Ecological Modelling, Elsevier, vol. 211(3), pages 251-266.
    5. Frank Davenport, 2017. "Estimating standard errors in spatial panel models with time varying spatial correlation," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 155-177, March.
    6. Leandro, Camila & Jay-Robert, Pierre & Mériguet, Bruno & Houard, Xavier & Renner, Ian W., 2020. "Is my sdm good enough? insights from a citizen science dataset in a point process modeling framework," Ecological Modelling, Elsevier, vol. 438(C).
    7. Vijay Rajagopal & Gregory Bass & Cameron G Walker & David J Crossman & Amorita Petzer & Anthony Hickey & Ivo Siekmann & Masahiko Hoshijima & Mark H Ellisman & Edmund J Crampin & Christian Soeller, 2015. "Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-31, September.
    8. Christoph Lambio & Tillman Schmitz & Richard Elson & Jeffrey Butler & Alexandra Roth & Silke Feller & Nicolai Savaskan & Tobia Lakes, 2023. "Exploring the Spatial Relative Risk of COVID-19 in Berlin-Neukölln," IJERPH, MDPI, vol. 20(10), pages 1-22, May.
    9. Abdollah Jalilian, 2017. "Modelling and classification of species abundance: a case study in the Barro Colorado Island plot," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2401-2409, October.
    10. Éric Marcon & Florence Puech, 2023. "Mapping distributions in non-homogeneous space with distance-based methods [Cartographie des distributions dans un espace non homogène à l'aide de méthodes basées sur la distance]," Post-Print hal-04345149, HAL.
    11. Eric Marcon & Florence Puech, 2012. "A typology of distance-based measures of spatial concentration," Working Papers halshs-00679993, HAL.
    12. Davies, Tilman M. & Jones, Khair & Hazelton, Martin L., 2016. "Symmetric adaptive smoothing regimens for estimation of the spatial relative risk function," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 12-28.
    13. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    14. Alison K. Cheeseman & Edward R. Vrscay, 2022. "Estimating the Fractal Dimensions of Vascular Networks and Other Branching Structures: Some Words of Caution," Mathematics, MDPI, vol. 10(5), pages 1-21, March.
    15. Retière, N. & Sidqi, Y. & Frankhauser, P., 2022. "A steady-state analysis of distribution networks by diffusion-limited-aggregation and multifractal geometry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    16. Sillero, Neftalí & Campos, João Carlos & Arenas-Castro, Salvador & Barbosa, A.Márcia, 2023. "A curated list of R packages for ecological niche modelling," Ecological Modelling, Elsevier, vol. 476(C).
    17. Martín, Gerardo & Yáñez-Arenas, Carlos & Chiappa-Carrara, Xavier, 2022. "Discrepancies between point process models and environmental envelopes identify the niche centroid – geography configuration," Ecological Modelling, Elsevier, vol. 469(C).
    18. Roger S. Bivand, 2021. "Progress in the R ecosystem for representing and handling spatial data," Journal of Geographical Systems, Springer, vol. 23(4), pages 515-546, October.
    19. Andrew J Edelman, 2012. "Positive Interactions between Desert Granivores: Localized Facilitation of Harvester Ants by Kangaroo Rats," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-9, February.
    20. Amanda S. Hering & Sean Bair, 2014. "Characterizing spatial and chronological target selection of serial offenders," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 123-140, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:406:y:2014:i:c:p:191-202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.