IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v600y2022ics0378437122003843.html
   My bibliography  Save this article

A steady-state analysis of distribution networks by diffusion-limited-aggregation and multifractal geometry

Author

Listed:
  • Retière, N.
  • Sidqi, Y.
  • Frankhauser, P.

Abstract

Global energy transformation, urban growth and the increasing share of electricity in energy consumption stimulate the development of electrical distribution systems. In most cases, the structure of distribution networks has been the result of progressive decisions limited by technical, socio-economic and spatial constraints. These decisions are taken with the help of dedicated tools that fail in grasping in a simple way the connections between the structural choices and the achieved performances. To improve planning process, a new approach is proposed which is based on multifractality to connect the distribution system’s network structure and steady-state properties. The structure of distribution grids is modeled by coupling a Diffusion-Limited-Aggregation approach and a binomial multiplicative process. The multifractal spectrum of the synthesized grids is calculated from a power flow and shows how the structural parameters are linked to the steady-state values (voltages and losses). The results are compared to realistic test cases. The article finally concludes on the interest of multifractality to grade distribution grids and the advantages of fractal architectures for future power networks.

Suggested Citation

  • Retière, N. & Sidqi, Y. & Frankhauser, P., 2022. "A steady-state analysis of distribution networks by diffusion-limited-aggregation and multifractal geometry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
  • Handle: RePEc:eee:phsmap:v:600:y:2022:i:c:s0378437122003843
    DOI: 10.1016/j.physa.2022.127552
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122003843
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127552?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    2. Sidqi, Yousra & Thomas, Isabelle & Frankhauser, Pierre & Retière, Nicolas, 2019. "Comparing fractal indices of electric networks to roads and buildings: The case of Grenoble (France)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    3. Albana ILO, 2019. "Design of the Smart Grid Architecture According to Fractal Principles and the Basics of Corresponding Market Structure," Energies, MDPI, vol. 12(21), pages 1-24, October.
    4. Tobias Rösch & Peter Treffinger, 2019. "Cluster Analysis of Distribution Grids in Baden-Württemberg," Energies, MDPI, vol. 12(20), pages 1-25, October.
    5. Abeysinghe, Sathsara & Wu, Jianzhong & Sooriyabandara, Mahesh & Abeysekera, Muditha & Xu, Tao & Wang, Chengshan, 2018. "Topological properties of medium voltage electricity distribution networks," Applied Energy, Elsevier, vol. 210(C), pages 1101-1112.
    6. Chaoming Song & Shlomo Havlin & Hernán A. Makse, 2005. "Self-similarity of complex networks," Nature, Nature, vol. 433(7024), pages 392-395, January.
    7. Lowitzsch, J. & Hoicka, C.E. & van Tulder, F.J., 2020. "Renewable energy communities under the 2019 European Clean Energy Package – Governance model for the energy clusters of the future?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    8. Rohit Trivedi & Sandipan Patra & Yousra Sidqi & Benjamin Bowler & Fiona Zimmermann & Geert Deconinck & Antonios Papaemmanouil & Shafi Khadem, 2022. "Community-Based Microgrids: Literature Review and Pathways to Decarbonise the Local Electricity Network," Energies, MDPI, vol. 15(3), pages 1-30, January.
    9. Tél, Tamás & Fülöp, Ágnes & Vicsek, Tamás, 1989. "Determination of fractal dimensions for geometrical multifractals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 159(2), pages 155-166.
    10. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    11. Saeedimoghaddam, Mahmoud & Stepinski, T.F., 2021. "Multiplicative random cascade models of multifractal urban structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vitor Fernão Pires & Armando Pires & Armando Cordeiro, 2023. "DC Microgrids: Benefits, Architectures, Perspectives and Challenges," Energies, MDPI, vol. 16(3), pages 1-20, January.
    2. Hamdi Abdi, 2022. "A Brief Review of Microgrid Surveys, by Focusing on Energy Management System," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    3. Behrendt, Jamie, 2023. "Microgrids and EU law: Three Microgrid models to solve one regulatory puzzle," Energy Policy, Elsevier, vol. 177(C).
    4. Huang, Da-Wen & Yu, Zu-Guo & Anh, Vo, 2017. "Multifractal analysis and topological properties of a new family of weighted Koch networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 695-705.
    5. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).
    6. Pavón-Domínguez, Pablo & Moreno-Pulido, Soledad, 2020. "A Fixed-Mass multifractal approach for unweighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    7. José F. C. Castro & Ronaldo A. Roncolatto & Antonio R. Donadon & Vittoria E. M. S. Andrade & Pedro Rosas & Rafael G. Bento & José G. Matos & Fernando A. Assis & Francisco C. R. Coelho & Rodolfo Quadro, 2023. "Microgrid Applications and Technical Challenges—The Brazilian Status of Connection Standards and Operational Procedures," Energies, MDPI, vol. 16(6), pages 1-25, March.
    8. Pavón-Domínguez, Pablo & Moreno-Pulido, Soledad, 2022. "Sandbox fixed-mass algorithm for multifractal unweighted complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    9. Viktor Bukovszki & Ábel Magyari & Marina Kristina Braun & Kitti Párdi & András Reith, 2020. "Energy Modelling as a Trigger for Energy Communities: A Joint Socio-Technical Perspective," Energies, MDPI, vol. 13(9), pages 1-44, May.
    10. Minuto, Francesco Demetrio & Lanzini, Andrea, 2022. "Energy-sharing mechanisms for energy community members under different asset ownership schemes and user demand profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    12. Farhat Afzah Samoon & Ikhlaq Hussain & Sheikh Javed Iqbal, 2023. "ILA Optimisation Based Control for Enhancing DC Link Voltage with Seamless and Adaptive VSC Control in a PV-BES Based AC Microgrid," Energies, MDPI, vol. 16(21), pages 1-23, October.
    13. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    14. Hussain Abdalla Sajwani & Bassel Soudan & Abdul Ghani Olabi, 2024. "Empowering Sustainability: Understanding Determinants of Consumer Investment in Microgrid Technology in the UAE," Energies, MDPI, vol. 17(9), pages 1-28, May.
    15. Muhammad Amir Raza & Muhammad Mohsin Aman & Altaf Hussain Rajpar & Mohamed Bashir Ali Bashir & Touqeer Ahmed Jumani, 2022. "Towards Achieving 100% Renewable Energy Supply for Sustainable Climate Change in Pakistan," Sustainability, MDPI, vol. 14(24), pages 1-23, December.
    16. Ray, Manojit & Chakraborty, Basab, 2022. "Impact of demand flexibility and tiered resilience on solar photovoltaic adoption in humanitarian settlements," Renewable Energy, Elsevier, vol. 193(C), pages 895-912.
    17. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.
    18. Werner, Gerhard, 2013. "Consciousness viewed in the framework of brain phase space dynamics, criticality, and the Renormalization Group," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 3-12.
    19. Dimitrios Trigkas & Chrysovalantou Ziogou & Spyros Voutetakis & Simira Papadopoulou, 2021. "Virtual Energy Storage in RES-Powered Smart Grids with Nonlinear Model Predictive Control," Energies, MDPI, vol. 14(4), pages 1-22, February.
    20. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:600:y:2022:i:c:s0378437122003843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.