IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v234y2015i1p133-15010.1007-s10479-014-1599-1.html
   My bibliography  Save this article

Multifractal theory with its applications in data management

Author

Listed:
  • Yuxin Zhao
  • Shuai Chang
  • Chang Liu

Abstract

The extraction of interesting information from enormous and irregular datasets has always been a significant research topic. For the datasets with irregular distribution and self-similarity, multifractal theory is the most appreciated approach and has been successfully applied in many fields, such as financial analysis, image processing, medical diagnosis, earthquake study, etc. In this paper, we make a detailed analysis and summary on three main functions, namely multifractal structure diagnosis, tendency and singularity analysis. Finally, some experiments based on oil prices data and spatial physical data are carried out to validate its performance effectively. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Yuxin Zhao & Shuai Chang & Chang Liu, 2015. "Multifractal theory with its applications in data management," Annals of Operations Research, Springer, vol. 234(1), pages 133-150, November.
  • Handle: RePEc:spr:annopr:v:234:y:2015:i:1:p:133-150:10.1007/s10479-014-1599-1
    DOI: 10.1007/s10479-014-1599-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-014-1599-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-014-1599-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pasquini, Michele & Serva, Maurizio, 1999. "Multiscaling and clustering of volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 269(1), pages 140-147.
    2. Vladik Kreinovich & Monchaya Chiangpradit & Wararit Panichkitkosolkul, 2012. "Efficient algorithms for heavy-tail analysis under interval uncertainty," Annals of Operations Research, Springer, vol. 195(1), pages 73-96, May.
    3. Cajueiro, Daniel O. & Tabak, Benjamin M., 2007. "Long-range dependence and multifractality in the term structure of LIBOR interest rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 603-614.
    4. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    5. L. Montrucchio & F. Privileggi, 1999. "Fractal steady states instochastic optimal control models," Annals of Operations Research, Springer, vol. 88(0), pages 183-197, January.
    6. Wang, Jun & Ning, Xinbao & Chen, Ying, 2003. "Multifractal analysis of electronic cardiogram taken from healthy and unhealthy adult subjects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 323(C), pages 561-568.
    7. Kaushik Matia & Yosef Ashkenazy & H. Eugene Stanley, 2003. "Multifractal Properties of Price Fluctuations of Stocks and Commodities," Papers cond-mat/0308012, arXiv.org.
    8. Tél, Tamás & Fülöp, Ágnes & Vicsek, Tamás, 1989. "Determination of fractal dimensions for geometrical multifractals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 159(2), pages 155-166.
    9. Skjeltorp, Johannes A, 2000. "Scaling in the Norwegian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(3), pages 486-528.
    10. Gao-Feng Gu & Wei-Xing Zhou, 2010. "Detrending moving average algorithm for multifractals," Papers 1005.0877, arXiv.org, revised Jun 2010.
    11. Plamen Ch. Ivanov & Luís A. Nunes Amaral & Ary L. Goldberger & Shlomo Havlin & Michael G. Rosenblum & Zbigniew R. Struzik & H. Eugene Stanley, 1999. "Multifractality in human heartbeat dynamics," Nature, Nature, vol. 399(6735), pages 461-465, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosella Castellano & Roy Cerqueti & Giulia Rotundo, 2020. "Exploring the financial risk of a temperature index: a fractional integrated approach," Annals of Operations Research, Springer, vol. 284(1), pages 225-242, January.
    2. Roy Cerqueti & Viviana Fanelli, 2021. "Long memory and crude oil’s price predictability," Annals of Operations Research, Springer, vol. 299(1), pages 895-906, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yudong & Wu, Chongfeng & Pan, Zhiyuan, 2011. "Multifractal detrending moving average analysis on the US Dollar exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3512-3523.
    2. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    3. Yufang Liu & Weiguo Zhang & Junhui Fu & Xiang Wu, 2020. "Multifractal Analysis of Realized Volatilities in Chinese Stock Market," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 319-336, August.
    4. Chen, Shu-Peng & He, Ling-Yun, 2010. "Multifractal spectrum analysis of nonlinear dynamical mechanisms in China’s agricultural futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1434-1444.
    5. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    6. Sarker, Alivia & Mali, Provash, 2021. "Detrended multifractal characterization of Indian rainfall records," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    7. Wang, Jian & Jiang, Wenjing & Wu, Xinpei & Yang, Mengdie & Shao, Wei, 2023. "Role of vaccine in fighting the variants of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    8. Mukli, Peter & Nagy, Zoltan & Eke, Andras, 2015. "Multifractal formalism by enforcing the universal behavior of scaling functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 150-167.
    9. Ruan, Qingsong & Zhang, Manqian & Lv, Dayong & Yang, Haiquan, 2018. "SAD and stock returns revisited: Nonlinear analysis based on MF-DCCA and Granger test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1009-1022.
    10. Xiong, Gang & Yu, Wenxian & Xia, Wenxiang & Zhang, Shuning, 2016. "Multifractal signal reconstruction based on singularity power spectrum," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 25-32.
    11. Pal, Mayukha & Satish, B. & Srinivas, K. & Rao, P. Madhusudana & Manimaran, P., 2015. "Multifractal detrended cross-correlation analysis of coding and non-coding DNA sequences through chaos-game representation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 596-603.
    12. Pawe{l} O'swik{e}cimka & Stanis{l}aw Dro.zd.z & Mattia Frasca & Robert Gk{e}barowski & Natsue Yoshimura & Luciano Zunino & Ludovico Minati, 2020. "Wavelet-based discrimination of isolated singularities masquerading as multifractals in detrended fluctuation analyses," Papers 2004.03319, arXiv.org.
    13. Zhang, Chen & Ni, Zhiwei & Ni, Liping & Li, Jingming & Zhou, Longfei, 2016. "Asymmetric multifractal detrending moving average analysis in time series of PM2.5 concentration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 322-330.
    14. Cao, Guangxi & Xu, Wei, 2016. "Nonlinear structure analysis of carbon and energy markets with MFDCCA based on maximum overlap wavelet transform," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 505-523.
    15. Olivares, Felipe & Zanin, Massimiliano, 2022. "Corrupted bifractal features in finite uncorrelated power-law distributed data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    16. Ruan, Qingsong & Yang, Haiquan & Lv, Dayong & Zhang, Shuhua, 2018. "Cross-correlations between individual investor sentiment and Chinese stock market return: New perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 243-256.
    17. Ruan, Qingsong & Zhou, Mi & Yin, Linsen & Lv, Dayong, 2021. "Hedging effectiveness of Chinese Treasury bond futures: New evidence based on nonlinear analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    18. Stošić, Darko & Stošić, Dusan & Stošić, Tatijana & Stanley, H. Eugene, 2015. "Multifractal analysis of managed and independent float exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 13-18.
    19. Delbianco, Fernando & Tohmé, Fernando & Stosic, Tatijana & Stosic, Borko, 2016. "Multifractal behavior of commodity markets: Fuel versus non-fuel products," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 573-580.
    20. Schumann, Aicko Y. & Kantelhardt, Jan W., 2011. "Multifractal moving average analysis and test of multifractal model with tuned correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(14), pages 2637-2654.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:234:y:2015:i:1:p:133-150:10.1007/s10479-014-1599-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.