IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v181y2024ics096007792400225x.html
   My bibliography  Save this article

Reservoir computing-based advance warning of extreme events

Author

Listed:
  • Wang, Tao
  • Zhou, Hanxu
  • Fang, Qing
  • Han, Yanan
  • Guo, Xingxing
  • Zhang, Yahui
  • Qian, Chao
  • Chen, Hongsheng
  • Barland, Stéphane
  • Xiang, Shuiying
  • Lippi, Gian Luca

Abstract

Physics-based computing exploits nonlinear or disorder-induced complexity, for example, to realize energy-efficient and high-throughput computing tasks. A particularly difficult but useful task is the prediction of extreme events that can occur in a wide range of complex systems. We prepare an experiment based on a microcavity semiconductor laser that produces statistically rare extreme events resulting from the interplay of deterministic nonlinear dynamics and spontaneous emission noise. We then evaluate the performance of three reservoir computing training approaches in predicting the occurrence of extreme events. We show that Dual Training Reservoir Computing (which in turn can be implemented with fast semiconductor laser dynamics) can provide meaningful early warnings up to 15 times the typical linear correlation time of the dynamics.

Suggested Citation

  • Wang, Tao & Zhou, Hanxu & Fang, Qing & Han, Yanan & Guo, Xingxing & Zhang, Yahui & Qian, Chao & Chen, Hongsheng & Barland, Stéphane & Xiang, Shuiying & Lippi, Gian Luca, 2024. "Reservoir computing-based advance warning of extreme events," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s096007792400225x
    DOI: 10.1016/j.chaos.2024.114673
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792400225X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114673?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Brunner & Miguel C. Soriano & Claudio R. Mirasso & Ingo Fischer, 2013. "Parallel photonic information processing at gigabyte per second data rates using transient states," Nature Communications, Nature, vol. 4(1), pages 1-7, June.
    2. Yuchen Zhang & Mingsheng Long & Kaiyuan Chen & Lanxiang Xing & Ronghua Jin & Michael I. Jordan & Jianmin Wang, 2023. "Skilful nowcasting of extreme precipitation with NowcastNet," Nature, Nature, vol. 619(7970), pages 526-532, July.
    3. Kaifeng Bi & Lingxi Xie & Hengheng Zhang & Xin Chen & Xiaotao Gu & Qi Tian, 2023. "Author Correction: Accurate medium-range global weather forecasting with 3D neural networks," Nature, Nature, vol. 621(7980), pages 45-45, September.
    4. L. Appeltant & M.C. Soriano & G. Van der Sande & J. Danckaert & S. Massar & J. Dambre & B. Schrauwen & C.R. Mirasso & I. Fischer, 2011. "Information processing using a single dynamical node as complex system," Nature Communications, Nature, vol. 2(1), pages 1-6, September.
    5. D. R. Solli & C. Ropers & P. Koonath & B. Jalali, 2007. "Optical rogue waves," Nature, Nature, vol. 450(7172), pages 1054-1057, December.
    6. Kaifeng Bi & Lingxi Xie & Hengheng Zhang & Xin Chen & Xiaotao Gu & Qi Tian, 2023. "Accurate medium-range global weather forecasting with 3D neural networks," Nature, Nature, vol. 619(7970), pages 533-538, July.
    7. David Chandler, 2005. "Interfaces and the driving force of hydrophobic assembly," Nature, Nature, vol. 437(7059), pages 640-647, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mattia Cavaiola & Federico Cassola & Davide Sacchetti & Francesco Ferrari & Andrea Mazzino, 2024. "Hybrid AI-enhanced lightning flash prediction in the medium-range forecast horizon," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Chu, Yinghao & Wang, Yiling & Yang, Dazhi & Chen, Shanlin & Li, Mengying, 2024. "A review of distributed solar forecasting with remote sensing and deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    3. Fabian Dvorak & Regina Stumpf & Sebastian Fehrler & Urs Fischbacher, 2024. "Generative AI Triggers Welfare-Reducing Decisions in Humans," Papers 2401.12773, arXiv.org.
    4. Xiangpeng Liang & Yanan Zhong & Jianshi Tang & Zhengwu Liu & Peng Yao & Keyang Sun & Qingtian Zhang & Bin Gao & Hadi Heidari & He Qian & Huaqiang Wu, 2022. "Rotating neurons for all-analog implementation of cyclic reservoir computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Minati, Ludovico & Mancinelli, Mattia & Frasca, Mattia & Bettotti, Paolo & Pavesi, Lorenzo, 2021. "An analog electronic emulator of non-linear dynamics in optical microring resonators," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    6. Lei Chen & Xiaohui Zhong & Hao Li & Jie Wu & Bo Lu & Deliang Chen & Shang-Ping Xie & Libo Wu & Qingchen Chao & Chensen Lin & Zixin Hu & Yuan Qi, 2024. "A machine learning model that outperforms conventional global subseasonal forecast models," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Hang Gao & Chun Shen & Xuesong Wang & Pak-Wai Chan & Kai-Kwong Hon & Jianbing Li, 2024. "Interpretable semi-supervised clustering enables universal detection and intensity assessment of diverse aviation hazardous winds," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Huijun Zhang & Mingjie Zhang & Ran Yi & Yaxin Liu & Qiuzi Han Wen & Xin Meng, 2024. "Growing Importance of Micro-Meteorology in the New Power System: Review, Analysis and Case Study," Energies, MDPI, vol. 17(6), pages 1-33, March.
    9. Florian Achermann & Thomas Stastny & Bogdan Danciu & Andrey Kolobov & Jen Jen Chung & Roland Siegwart & Nicholas Lawrance, 2024. "WindSeer: real-time volumetric wind prediction over complex terrain aboard a small uncrewed aerial vehicle," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Zhenjia Chen & Zhenyuan Lin & Ji Yang & Cong Chen & Di Liu & Liuting Shan & Yuanyuan Hu & Tailiang Guo & Huipeng Chen, 2024. "Cross-layer transmission realized by light-emitting memristor for constructing ultra-deep neural network with transfer learning ability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Min Yan & Can Huang & Peter Bienstman & Peter Tino & Wei Lin & Jie Sun, 2024. "Emerging opportunities and challenges for the future of reservoir computing," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Francesco Carlucci & Francesco Fiorito, 2024. "Simulation of Responsive Envelopes in Current and Future Climate Scenarios: A New Interactive Computational Platform for Energy Analyses," Energies, MDPI, vol. 17(21), pages 1-26, October.
    13. Li, Liu-Qing & Gao, Yi-Tian & Yu, Xin & Ding, Cui-Cui & Wang, Dong, 2022. "Bilinear form and nonlinear waves of a (1+1)-dimensional generalized Boussinesq equation for the gravity waves over water surface," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 494-508.
    14. Zhiwei Chen & Wenjie Li & Zhen Fan & Shuai Dong & Yihong Chen & Minghui Qin & Min Zeng & Xubing Lu & Guofu Zhou & Xingsen Gao & Jun-Ming Liu, 2023. "All-ferroelectric implementation of reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Zhang, Yu & Li, Chuanzhong & He, Jingsong, 2016. "Rogue waves in a resonant erbium-doped fiber system with higher-order effects," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 826-841.
    17. Seadawy, Aly R. & Ali, Safdar & Rizvi, Syed T.R., 2022. "On modulation instability analysis and rogue waves in the presence of external potential: The (n + 1)-dimensional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    18. Lina Jaurigue & Kathy Lüdge, 2022. "Connecting reservoir computing with statistical forecasting and deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-3, December.
    19. Suresh, R. & Senthilkumar, D.V. & Lakshmanan, M. & Kurths, J., 2016. "Emergence of a common generalized synchronization manifold in network motifs of structurally different time-delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 235-245.
    20. Xi-zhong Liu & Zhi-Mei Lou & Xian-Min Qian & Lamine Thiam, 2019. "A Study on Lump and Interaction Solutions to a (3 + 1)-Dimensional Soliton Equation," Complexity, Hindawi, vol. 2019, pages 1-12, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s096007792400225x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.