IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54451-3.html
   My bibliography  Save this article

Accelerated optimization in deep learning with a proportional-integral-derivative controller

Author

Listed:
  • Song Chen

    (Zhejiang University)

  • Jiaxu Liu

    (Zhejiang University)

  • Pengkai Wang

    (Zhejiang University)

  • Chao Xu

    (Zhejiang University
    Zhejiang University
    Huzhou Institute of Zhejiang University)

  • Shengze Cai

    (Zhejiang University
    Zhejiang University)

  • Jian Chu

    (Zhejiang University
    Zhejiang University)

Abstract

High-performance optimization algorithms are essential in deep learning. However, understanding the behavior of optimization (i.e., learning process) remains challenging due to the instability and weak interpretability of the algorithms. Since gradient-based optimizations can be interpreted as continuous-time dynamical systems, applying feedback control to the dynamical systems that model the optimizers may provide another perspective for exploring more robust, accurate and explainable optimization algorithms. In this study, we present a framework for optimization called controlled heavy-ball optimizer. By employing the proportional-integral-derivative (PID) controller in the optimizer, we develop a deterministic continuous-time optimizer called Proportional-Integral-Derivative Accelerated Optimizer (PIDAO), and provide theoretical convergence analysis of PIDAO in unconstrained (non-)convex optimizations. As a byproduct, we derive PIDAO-family schemes for training deep neural networks by using specific discretization methods. Compared to classical optimizers, PIDAO can be empirically proven a more aggressive capacity to explore the loss landscape with lower computational costs due to the property of PID controller. Experimental evaluations demonstrate that PIDAO can accelerate the convergence and enhance the accuracy of deep learning, achieving state-of-the-art performance compared with advanced algorithms.

Suggested Citation

  • Song Chen & Jiaxu Liu & Pengkai Wang & Chao Xu & Shengze Cai & Jian Chu, 2024. "Accelerated optimization in deep learning with a proportional-integral-derivative controller," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54451-3
    DOI: 10.1038/s41467-024-54451-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54451-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54451-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kaifeng Bi & Lingxi Xie & Hengheng Zhang & Xin Chen & Xiaotao Gu & Qi Tian, 2023. "Author Correction: Accurate medium-range global weather forecasting with 3D neural networks," Nature, Nature, vol. 621(7980), pages 45-45, September.
    2. Kevin Course & Prasanth B. Nair, 2023. "State estimation of a physical system with unknown governing equations," Nature, Nature, vol. 622(7982), pages 261-267, October.
    3. Elia Kaufmann & Leonard Bauersfeld & Antonio Loquercio & Matthias Müller & Vladlen Koltun & Davide Scaramuzza, 2023. "Champion-level drone racing using deep reinforcement learning," Nature, Nature, vol. 620(7976), pages 982-987, August.
    4. Jonas Degrave & Federico Felici & Jonas Buchli & Michael Neunert & Brendan Tracey & Francesco Carpanese & Timo Ewalds & Roland Hafner & Abbas Abdolmaleki & Diego de las Casas & Craig Donner & Leslie F, 2022. "Magnetic control of tokamak plasmas through deep reinforcement learning," Nature, Nature, vol. 602(7897), pages 414-419, February.
    5. Peter R. Wurman & Samuel Barrett & Kenta Kawamoto & James MacGlashan & Kaushik Subramanian & Thomas J. Walsh & Roberto Capobianco & Alisa Devlic & Franziska Eckert & Florian Fuchs & Leilani Gilpin & P, 2022. "Outracing champion Gran Turismo drivers with deep reinforcement learning," Nature, Nature, vol. 602(7896), pages 223-228, February.
    6. Brenden M. Lake & Marco Baroni, 2023. "Human-like systematic generalization through a meta-learning neural network," Nature, Nature, vol. 623(7985), pages 115-121, November.
    7. Kaifeng Bi & Lingxi Xie & Hengheng Zhang & Xin Chen & Xiaotao Gu & Qi Tian, 2023. "Accurate medium-range global weather forecasting with 3D neural networks," Nature, Nature, vol. 619(7970), pages 533-538, July.
    8. Julian Kates-Harbeck & Alexey Svyatkovskiy & William Tang, 2019. "Predicting disruptive instabilities in controlled fusion plasmas through deep learning," Nature, Nature, vol. 568(7753), pages 526-531, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
    2. Fabian Dvorak & Regina Stumpf & Sebastian Fehrler & Urs Fischbacher, 2024. "Generative AI Triggers Welfare-Reducing Decisions in Humans," Papers 2401.12773, arXiv.org.
    3. Andrea Murari & Riccardo Rossi & Teddy Craciunescu & Jesús Vega & Michela Gelfusa, 2024. "A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Lei Chen & Xiaohui Zhong & Hao Li & Jie Wu & Bo Lu & Deliang Chen & Shang-Ping Xie & Libo Wu & Qingchen Chao & Chensen Lin & Zixin Hu & Yuan Qi, 2024. "A machine learning model that outperforms conventional global subseasonal forecast models," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Hang Gao & Chun Shen & Xuesong Wang & Pak-Wai Chan & Kai-Kwong Hon & Jianbing Li, 2024. "Interpretable semi-supervised clustering enables universal detection and intensity assessment of diverse aviation hazardous winds," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Huijun Zhang & Mingjie Zhang & Ran Yi & Yaxin Liu & Qiuzi Han Wen & Xin Meng, 2024. "Growing Importance of Micro-Meteorology in the New Power System: Review, Analysis and Case Study," Energies, MDPI, vol. 17(6), pages 1-33, March.
    7. Jinming Xu & Yuan Lin, 2024. "Energy Management for Hybrid Electric Vehicles Using Safe Hybrid-Action Reinforcement Learning," Mathematics, MDPI, vol. 12(5), pages 1-20, February.
    8. Frank Brückerhoff-Plückelmann & Hendrik Borras & Bernhard Klein & Akhil Varri & Marlon Becker & Jelle Dijkstra & Martin Brückerhoff & C. David Wright & Martin Salinga & Harish Bhaskaran & Benjamin Ris, 2024. "Probabilistic photonic computing with chaotic light," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Mattia Cavaiola & Federico Cassola & Davide Sacchetti & Francesco Ferrari & Andrea Mazzino, 2024. "Hybrid AI-enhanced lightning flash prediction in the medium-range forecast horizon," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Chu, Yinghao & Wang, Yiling & Yang, Dazhi & Chen, Shanlin & Li, Mengying, 2024. "A review of distributed solar forecasting with remote sensing and deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    11. S. K. Kim & R. Shousha & S. M. Yang & Q. Hu & S. H. Hahn & A. Jalalvand & J.-K. Park & N. C. Logan & A. O. Nelson & Y.-S. Na & R. Nazikian & R. Wilcox & R. Hong & T. Rhodes & C. Paz-Soldan & Y. M. Jeo, 2024. "Highest fusion performance without harmful edge energy bursts in tokamak," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Florian Achermann & Thomas Stastny & Bogdan Danciu & Andrey Kolobov & Jen Jen Chung & Roland Siegwart & Nicholas Lawrance, 2024. "WindSeer: real-time volumetric wind prediction over complex terrain aboard a small uncrewed aerial vehicle," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Zhenjia Chen & Zhenyuan Lin & Ji Yang & Cong Chen & Di Liu & Liuting Shan & Yuanyuan Hu & Tailiang Guo & Huipeng Chen, 2024. "Cross-layer transmission realized by light-emitting memristor for constructing ultra-deep neural network with transfer learning ability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Francesco Carlucci & Francesco Fiorito, 2024. "Simulation of Responsive Envelopes in Current and Future Climate Scenarios: A New Interactive Computational Platform for Energy Analyses," Energies, MDPI, vol. 17(21), pages 1-26, October.
    15. Wang, Tao & Zhou, Hanxu & Fang, Qing & Han, Yanan & Guo, Xingxing & Zhang, Yahui & Qian, Chao & Chen, Hongsheng & Barland, Stéphane & Xiang, Shuiying & Lippi, Gian Luca, 2024. "Reservoir computing-based advance warning of extreme events," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    16. Tobias Thomas & Dominik Straub & Fabian Tatai & Megan Shene & Tümer Tosik & Kristian Kersting & Constantin A. Rothkopf, 2024. "Modelling dataset bias in machine-learned theories of economic decision-making," Nature Human Behaviour, Nature, vol. 8(4), pages 679-691, April.
    17. Zhang, Tianhao & Dong, Zhe & Huang, Xiaojin, 2024. "Multi-objective optimization of thermal power and outlet steam temperature for a nuclear steam supply system with deep reinforcement learning," Energy, Elsevier, vol. 286(C).
    18. Maryam Ghalkhani & Saeid Habibi, 2022. "Review of the Li-Ion Battery, Thermal Management, and AI-Based Battery Management System for EV Application," Energies, MDPI, vol. 16(1), pages 1-16, December.
    19. Nweye, Kingsley & Sankaranarayanan, Siva & Nagy, Zoltan, 2023. "MERLIN: Multi-agent offline and transfer learning for occupant-centric operation of grid-interactive communities," Applied Energy, Elsevier, vol. 346(C).
    20. Yang, Kaiyuan & Huang, Houjing & Vandans, Olafs & Murali, Adithya & Tian, Fujia & Yap, Roland H.C. & Dai, Liang, 2023. "Applying deep reinforcement learning to the HP model for protein structure prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54451-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.