IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v404y2021ics0096300321003416.html
   My bibliography  Save this article

Short-term predictions and prevention strategies for COVID-19: A model-based study

Author

Listed:
  • Nadim, Sk Shahid
  • Ghosh, Indrajit
  • Chattopadhyay, Joydev

Abstract

An outbreak of respiratory disease caused by a novel coronavirus is ongoing from December 2019. As of December 14, 2020, it has caused an epidemic outbreak with more than 73 million confirmed infections and above 1.5 million reported deaths worldwide. During this period of an epidemic when human-to-human transmission is established and reported cases of coronavirus disease 2019 (COVID-19) are rising worldwide, investigation of control strategies and forecasting are necessary for health care planning. In this study, we propose and analyze a compartmental epidemic model of COVID-19 to predict and control the outbreak. The basic reproduction number and the control reproduction number are calculated analytically. A detailed stability analysis of the model is performed to observe the dynamics of the system. We calibrated the proposed model to fit daily data from the United Kingdom (UK) where the situation is still alarming. Our findings suggest that independent self-sustaining human-to-human spread (R0>1,Rc>1) is already present. Short-term predictions show that the decreasing trend of new COVID-19 cases is well captured by the model. Further, we found that effective management of quarantined individuals is more effective than management of isolated individuals to reduce the disease burden. Thus, if limited resources are available, then investing on the quarantined individuals will be more fruitful in terms of reduction of cases.

Suggested Citation

  • Nadim, Sk Shahid & Ghosh, Indrajit & Chattopadhyay, Joydev, 2021. "Short-term predictions and prevention strategies for COVID-19: A model-based study," Applied Mathematics and Computation, Elsevier, vol. 404(C).
  • Handle: RePEc:eee:apmaco:v:404:y:2021:i:c:s0096300321003416
    DOI: 10.1016/j.amc.2021.126251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321003416
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aldila, Dipo & Khoshnaw, Sarbaz H.A. & Safitri, Egi & Anwar, Yusril Rais & Bakry, Aanisah R.Q. & Samiadji, Brenda M. & Anugerah, Demas A. & GH, M. Farhan Alfarizi & Ayulani, Indri D. & Salim, Sheryl N, 2020. "A mathematical study on the spread of COVID-19 considering social distancing and rapid assessment: The case of Jakarta, Indonesia," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Sardar, Tridip & Nadim, Sk Shahid & Rana, Sourav & Chattopadhyay, Joydev, 2020. "Assessment of lockdown effect in some states and overall India: A predictive mathematical study on COVID-19 outbreak," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Nadim, Sk Shahid & Chattopadhyay, Joydev, 2020. "Occurrence of backward bifurcation and prediction of disease transmission with imperfect lockdown: A case study on COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    5. Wenhui Li & Michael J. Moore & Natalya Vasilieva & Jianhua Sui & Swee Kee Wong & Michael A. Berne & Mohan Somasundaran & John L. Sullivan & Katherine Luzuriaga & Thomas C. Greenough & Hyeryun Choe & M, 2003. "Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus," Nature, Nature, vol. 426(6965), pages 450-454, November.
    6. Annas, Suwardi & Isbar Pratama, Muh. & Rifandi, Muh. & Sanusi, Wahidah & Side, Syafruddin, 2020. "Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lamia Hammadi & Hajar Raillani & Babacar Mbaye Ndiaye & Badria Aggoug & Abdessamad El Ballouti & Said Jidane & Lahcen Belyamani & Eduardo Souza de Cursi, 2023. "Uncertainty Quantification for Epidemic Risk Management: Case of SARS-CoV-2 in Morocco," IJERPH, MDPI, vol. 20(5), pages 1-29, February.
    2. Shao, Qi & Han, Dun, 2022. "Epidemic spreading in metapopulation networks with heterogeneous mobility rates," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    3. Yang, Bo & Yu, Zhenhua & Cai, Yuanli, 2022. "The impact of vaccination on the spread of COVID-19: Studying by a mathematical model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    4. Meng, Xueyu & Han, Sijie & Wu, Leilei & Si, Shubin & Cai, Zhiqiang, 2022. "Analysis of epidemic vaccination strategies by node importance and evolutionary game on complex networks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Mugnaine, Michele & Gabrick, Enrique C. & Protachevicz, Paulo R. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Batista, Antonio M. & Caldas, Iberê L. & Szezech Jr, José D. & V, 2022. "Control attenuation and temporary immunity in a cellular automata SEIR epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    6. Vashishth, Anil K. & Basaiti, Komal, 2024. "Modeling the effect of non-pharmaceutical measures and vaccination on the spread of two variants of COVID-19 in India," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 139-168.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaetano Perone, 2022. "Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 917-940, August.
    2. Yu, Zhenhua & Zhang, Jingmeng & Zhang, Yun & Cong, Xuya & Li, Xiaobo & Mostafa, Almetwally M., 2024. "Mathematical modeling and simulation for COVID-19 with mutant and quarantined strategy," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Rubayyi T. Alqahtani & Abdelhamid Ajbar, 2021. "Study of Dynamics of a COVID-19 Model for Saudi Arabia with Vaccination Rate, Saturated Treatment Function and Saturated Incidence Rate," Mathematics, MDPI, vol. 9(23), pages 1-13, December.
    4. Vashishth, Anil K. & Basaiti, Komal, 2024. "Modeling the effect of non-pharmaceutical measures and vaccination on the spread of two variants of COVID-19 in India," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 139-168.
    5. Behrooz Darbani, 2020. "The Expression and Polymorphism of Entry Machinery for COVID-19 in Human: Juxtaposing Population Groups, Gender, and Different Tissues," IJERPH, MDPI, vol. 17(10), pages 1-8, May.
    6. Sharma, Natasha & Verma, Atul Kumar & Gupta, Arvind Kumar, 2021. "Spatial network based model forecasting transmission and control of COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    7. Abu Reza Md. Towfiqul Islam & Md. Hasanuzzaman & Md. Abul Kalam Azad & Roquia Salam & Farzana Zannat Toshi & Md. Sanjid Islam Khan & G. M. Monirul Alam & Sobhy M. Ibrahim, 2021. "Effect of meteorological factors on COVID-19 cases in Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9139-9162, June.
    8. Indrikis A. Krams & Priit Jõers & Severi Luoto & Giedrius Trakimas & Vilnis Lietuvietis & Ronalds Krams & Irena Kaminska & Markus J. Rantala & Tatjana Krama, 2021. "The Obesity Paradox Predicts the Second Wave of COVID-19 to Be Severe in Western Countries," IJERPH, MDPI, vol. 18(3), pages 1-10, January.
    9. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Xin, Li & Xi, Chen & Sagir, Mujgan & Wenbo, Zhang, 2023. "How can infectious medical waste be forecasted and transported during the COVID-19 pandemic? A hybrid two-stage method," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    11. Marinca, Bogdan & Marinca, Vasile & Bogdan, Ciprian, 2021. "Dynamics of SEIR epidemic model by optimal auxiliary functions method," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    12. Rubayyi T. Alqahtani & Abdelhamid Ajbar & Nadiyah Hussain Alharthi, 2024. "Dynamics of a Model of Coronavirus Disease with Fear Effect, Treatment Function, and Variable Recovery Rate," Mathematics, MDPI, vol. 12(11), pages 1-16, May.
    13. Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
    14. Vincenzo Alfano & Salvatore Ercolano, 2022. "Stay at Home! Governance Quality and Effectiveness of Lockdown," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 159(1), pages 101-123, January.
    15. Nur Hannani Bi Rahman & Shazmin Shareena A. Azis & Ibrahim Sipan, 2021. "COVID-19: Standard Operating Procedure Improvement For Green Office Building Using Indoor Environmental Quality," LARES lares-2021-4dqg, Latin American Real Estate Society (LARES).
    16. Bhardwaj, Rashmi & Bangia, Aashima, 2020. "Data driven estimation of novel COVID-19 transmission risks through hybrid soft-computing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    17. Yiannakoulias, Nikolaos & Slavik, Catherine E. & Sturrock, Shelby L. & Darlington, J. Connor, 2020. "Open government data, uncertainty and coronavirus: An infodemiological case study," Social Science & Medicine, Elsevier, vol. 265(C).
    18. Ashwin Muniyappan & Balamuralitharan Sundarappan & Poongodi Manoharan & Mounir Hamdi & Kaamran Raahemifar & Sami Bourouis & Vijayakumar Varadarajan, 2022. "Stability and Numerical Solutions of Second Wave Mathematical Modeling on COVID-19 and Omicron Outbreak Strategy of Pandemic: Analytical and Error Analysis of Approximate Series Solutions by Using HPM," Mathematics, MDPI, vol. 10(3), pages 1-27, January.
    19. Ravindra B. Malabadi & Neelambika T. Meti & Raju K. Chalannavar, 2021. "Role of herbal medicine for controlling coronavirus (SARS-CoV-2) disease (COVID-19)," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 8(2), pages 135-165, February.
    20. Hisano Yajima & Yuki Anraku & Yu Kaku & Kanako Terakado Kimura & Arnon Plianchaisuk & Kaho Okumura & Yoshiko Nakada-Nakura & Yusuke Atarashi & Takuya Hemmi & Daisuke Kuroda & Yoshimasa Takahashi & Shu, 2024. "Structural basis for receptor-binding domain mobility of the spike in SARS-CoV-2 BA.2.86 and JN.1," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:404:y:2021:i:c:s0096300321003416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.