IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v180y2024ics0960077924000304.html
   My bibliography  Save this article

Complex role of time delay in dynamical coordination of neural progenitor fate decisions mediated by Notch pathway

Author

Listed:
  • Zhang, Yuan
  • Cao, Jinde
  • Liu, Lixia
  • Liu, Haihong
  • Li, Zhouhong

Abstract

Although the oscillation and bistability in Notch signaling pathway are essential for neural development, the precise regulation mechanism and biological significance underlying these dynamics have so far remained elusive. In this work, we proposed a specific delayed computational model to qualitatively explore the dynamical coordination of neural progenitor fate decisions. We found that the double-negative feedback loop formed by Hes1 and miR-9 can give rise to bistability that possesses the potential to create two coexisting stable steady states of high and low levels of Hes1, thereby resulting in two distinct fates: quiescent progenitors and differentiated neurons. Furthermore, we theoretically revealed that the time delay resulting from Hes1 protein production can induce stable sustained oscillations through a supercritical Hopf bifurcation, which facilitates the neural progenitor maintenance and proliferation. Uniquely, we discovered an emerging role of the time delay that has ability to trigger spontaneous switches between bistable states without any modification of model parameters and initial conditions, and established the corresponding basins of attraction to illustrate the principle of this time-delay-based switches. Moreover, we observed delay-induced transient chaos phenomenon in our work. Our results are consistent with several experimental observations and theoretical results, which may provide a new clue for exploring the complex regulatory mechanism of neural development.

Suggested Citation

  • Zhang, Yuan & Cao, Jinde & Liu, Lixia & Liu, Haihong & Li, Zhouhong, 2024. "Complex role of time delay in dynamical coordination of neural progenitor fate decisions mediated by Notch pathway," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000304
    DOI: 10.1016/j.chaos.2024.114479
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924000304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114479?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Danfeng & Tian, Mengquan & Zhu, Quanxin, 2022. "Some results on finite-time stability of stochastic fractional-order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Adan Aguirre & Maria E. Rubio & Vittorio Gallo, 2010. "Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal," Nature, Nature, vol. 467(7313), pages 323-327, September.
    3. Tian, Zhongda, 2020. "Chaotic characteristic analysis of network traffic time series at different time scales," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    4. Thoiyab, N. Mohamed & Muruganantham, P. & Zhu, Quanxin & Gunasekaran, Nallappan, 2021. "Novel results on global stability analysis for multiple time-delayed BAM neural networks under parameter uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Tchitnga, R. & Mezatio, B.A. & Fozin, T. Fonzin & Kengne, R. & Louodop Fotso, P.H. & Fomethe, A., 2019. "A novel hyperchaotic three-component oscillator operating at high frequency," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 166-180.
    6. Marc Goodfellow & Nicholas E. Phillips & Cerys Manning & Tobias Galla & Nancy Papalopulu, 2014. "microRNA input into a neural ultradian oscillator controls emergence and timing of alternative cell states," Nature Communications, Nature, vol. 5(1), pages 1-10, May.
    7. Meryem B. Baghdadi & David Castel & Léo Machado & So-ichiro Fukada & David E. Birk & Frederic Relaix & Shahragim Tajbakhsh & Philippos Mourikis, 2018. "Reciprocal signalling by Notch–Collagen V–CALCR retains muscle stem cells in their niche," Nature, Nature, vol. 557(7707), pages 714-718, May.
    8. Yao Zhang & Ines Lahmann & Katharina Baum & Hiromi Shimojo & Philippos Mourikis & Jana Wolf & Ryoichiro Kageyama & Carmen Birchmeier, 2021. "Oscillations of Delta-like1 regulate the balance between differentiation and maintenance of muscle stem cells," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Méndez-Gordillo, Alma Rosa & Cadenas, Erasmo, 2021. "Wind speed forecasting by the extraction of the multifractal patterns of time series through the multiplicative cascade technique," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Zheng, Wei & Zhang, Zhiming & Lam, Hak-Keung & Sun, Fuchun & Wen, Shuhuan, 2023. "LMIs-based exponential stabilization for interval delay systems via congruence transformation: Application in chaotic Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    3. Wafo Tekam, Raoul Blaise & Kengne, Jacques & Djuidje Kenmoe, Germaine, 2019. "High frequency Colpitts’ oscillator: A simple configuration for chaos generation," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 351-360.
    4. Wang, Chen & Zhang, Hai & Ye, Renyu & Zhang, Weiwei & Zhang, Hongmei, 2023. "Finite time passivity analysis for Caputo fractional BAM reaction–diffusion delayed neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 424-443.
    5. Qiwen Sun & Zhaohang Cai & Chunjuan Zhu, 2022. "A Novel Dynamical Regulation of mRNA Distribution by Cross-Talking Pathways," Mathematics, MDPI, vol. 10(9), pages 1-14, May.
    6. Xiaoyan Wei & Angelos Rigopoulos & Matthias Lienhard & Sophie Pöhle-Kronawitter & Georgios Kotsaris & Julia Franke & Nikolaus Berndt & Joy Orezimena Mejedo & Hao Wu & Stefan Börno & Bernd Timmermann &, 2024. "Neurofibromin 1 controls metabolic balance and Notch-dependent quiescence of murine juvenile myogenic progenitors," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    7. Dhayal, Rajesh & Zhu, Quanxin, 2023. "Stability and controllability results of ψ-Hilfer fractional integro-differential systems under the influence of impulses," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    8. Rhaima, Mohamed, 2023. "Ulam–Hyers stability for an impulsive Caputo–Hadamard fractional neutral stochastic differential equations with infinite delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 281-295.
    9. Mezatio, Brice Anicet & Motchongom, Marceline Tingue & Wafo Tekam, Blaise Raoul & Kengne, Romanic & Tchitnga, Robert & Fomethe, Anaclet, 2019. "A novel memristive 6D hyperchaotic autonomous system with hidden extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 100-115.
    10. Felicia Lazure & Rick Farouni & Korin Sahinyan & Darren M. Blackburn & Aldo Hernández-Corchado & Gabrielle Perron & Tianyuan Lu & Adrien Osakwe & Jiannis Ragoussis & Colin Crist & Theodore J. Perkins , 2023. "Transcriptional reprogramming of skeletal muscle stem cells by the niche environment," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Nick E Phillips & Cerys Manning & Nancy Papalopulu & Magnus Rattray, 2017. "Identifying stochastic oscillations in single-cell live imaging time series using Gaussian processes," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-30, May.
    12. Tang, Li-Hong & Bai, Yu-Long & Yang, Jie & Lu, Ya-Ni, 2020. "A hybrid prediction method based on empirical mode decomposition and multiple model fusion for chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    13. Oliveira, José J., 2022. "Global stability criteria for nonlinear differential systems with infinite delay and applications to BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    14. Liumeng Yang & Ruichun He & Jie Wang & Hongxing Zhao & Huo Chai, 2024. "Analysis of Dynamic Behavior of Gravity Model Using the Techniques of Road Saturation and Hilbert Curve Dimensionality Reduction," Sustainability, MDPI, vol. 16(13), pages 1-19, July.
    15. Moualkia, Seyfeddine, 2023. "Mathematical analysis of new variant Omicron model driven by Lévy noise and with variable-order fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    16. Jiang, Ziling & Huang, Fan & Shao, Haijian & Cai, Shuiming & Lu, Xiaobo & Jiang, Shengqin, 2023. "Time-varying finite-time synchronization analysis of attack-induced uncertain neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    17. Suyang Zhang & Feng Yang & Yile Huang & Liangqiang He & Yuying Li & Yi Ching Esther Wan & Yingzhe Ding & Kui Ming Chan & Ting Xie & Hao Sun & Huating Wang, 2023. "ATF3 induction prevents precocious activation of skeletal muscle stem cell by regulating H2B expression," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    18. Wang, Jujie & Cui, Quan & He, Maolin, 2022. "Hybrid intelligent framework for carbon price prediction using improved variational mode decomposition and optimal extreme learning machine," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    19. Liu, Zhiguang & Zhu, Quanxin, 2023. "Ultimate boundedness of impulsive stochastic delay differential equations with delayed impulses," Statistics & Probability Letters, Elsevier, vol. 199(C).
    20. Balazs V. Varga & Maryam Faiz & Helena Pivonkova & Gabriel Khelifi & Huijuan Yang & Shangbang Gao & Emma Linderoth & Mei Zhen & Ragnhildur Thora Karadottir & Samer M. Hussein & Andras Nagy, 2022. "Signal requirement for cortical potential of transplantable human neuroepithelial stem cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.