IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v170y2023ics0960077923003053.html
   My bibliography  Save this article

Relatively exact controllability for fractional stochastic delay differential equations of order κ∈(1,2]

Author

Listed:
  • Huang, Jizhao
  • Luo, Danfeng
  • Zhu, Quanxin

Abstract

In this paper, our main purpose is to study a class of fractional stochastic delay differential equations (FSDDEs) of order κ∈(1,2]. Firstly, we present a concept of delay Grammian matrix involving delayed matrix functions of sine. Subsequently, the relatively exact controllability of linear FSDDEs is obtained by using Grammian matrix. Furthermore, based on Krasnoselskii’s fixed point theorem, we explore the relatively exact controllability of the nonlinear addressed equations. In addition, with the aid of delay Grönwall inequality, Jensen inequality and Itô isometry, existence of optimal control for the Lagrange problem is derived. Finally, the theoretical conclusions are supported through two examples.

Suggested Citation

  • Huang, Jizhao & Luo, Danfeng & Zhu, Quanxin, 2023. "Relatively exact controllability for fractional stochastic delay differential equations of order κ∈(1,2]," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923003053
    DOI: 10.1016/j.chaos.2023.113404
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923003053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113404?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Vipin & Malik, Muslim & Debbouche, Amar, 2021. "Stability and controllability analysis of fractional damped differential system with non-instantaneous impulses," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    2. Kinda Abuasbeh & Nazim I. Mahmudov & Muath Awadalla, 2023. "Relative Controllability and Ulam–Hyers Stability of the Second-Order Linear Time-Delay Systems," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    3. Li, Mengmeng & Wang, JinRong, 2018. "Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 254-265.
    4. Wang, Xue & Luo, Danfeng & Zhu, Quanxin, 2022. "Ulam-Hyers stability of caputo type fuzzy fractional differential equations with time-delays," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    5. Luo, Danfeng & Tian, Mengquan & Zhu, Quanxin, 2022. "Some results on finite-time stability of stochastic fractional-order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    6. Kumar, Vipin & Stamov, Gani & Stamova, Ivanka, 2023. "Controllability Results for a Class of Piecewise Nonlinear Impulsive Fractional Dynamic Systems," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    7. Vadivoo, B.S. & Jothilakshmi, G. & Almalki, Y. & Debbouche, A. & Lavanya, M., 2022. "Relative controllability analysis of fractional order differential equations with multiple time delays," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    8. Ahmed M. Elshenhab & Xingtao Wang, 2022. "Controllability and Hyers–Ulam Stability of Differential Systems with Pure Delay," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
    9. Sathiyaraj, T. & Fečkan, Michal & Wang, JinRong, 2020. "Null controllability results for stochastic delay systems with delayed perturbation of matrices," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    10. Jiale Sheng & Wei Jiang & Denghao Pang & Sen Wang, 2020. "Controllability of Nonlinear Fractional Dynamical Systems with a Mittag–Leffler Kernel," Mathematics, MDPI, vol. 8(12), pages 1-10, December.
    11. Wang, JinRong & Li, Xuezhu, 2015. "Ulam–Hyers stability of fractional Langevin equations," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 72-83.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dhayal, Rajesh & Zhu, Quanxin, 2023. "Stability and controllability results of ψ-Hilfer fractional integro-differential systems under the influence of impulses," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Moualkia, Seyfeddine, 2023. "Mathematical analysis of new variant Omicron model driven by Lévy noise and with variable-order fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Vadivoo, B.S. & Jothilakshmi, G. & Almalki, Y. & Debbouche, A. & Lavanya, M., 2022. "Relative controllability analysis of fractional order differential equations with multiple time delays," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    4. Kumar, Vipin & Stamov, Gani & Stamova, Ivanka, 2023. "Controllability Results for a Class of Piecewise Nonlinear Impulsive Fractional Dynamic Systems," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    5. Christopher N. Angstmann & Stuart-James M. Burney & Bruce I. Henry & Byron A. Jacobs & Zhuang Xu, 2023. "A Systematic Approach to Delay Functions," Mathematics, MDPI, vol. 11(21), pages 1-34, November.
    6. Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2019. "A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 266-282.
    7. Sathiyaraj, T. & Fečkan, Michal & Wang, JinRong, 2020. "Null controllability results for stochastic delay systems with delayed perturbation of matrices," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    8. Hristo Kiskinov & Mariyan Milev & Andrey Zahariev, 2022. "About the Resolvent Kernel of Neutral Linear Fractional System with Distributed Delays," Mathematics, MDPI, vol. 10(23), pages 1-17, December.
    9. Daniela Marian & Sorina Anamaria Ciplea & Nicolaie Lungu, 2022. "Hyers–Ulam–Rassias Stability of Hermite’s Differential Equation," Mathematics, MDPI, vol. 10(6), pages 1-7, March.
    10. Aydin, Mustafa & Mahmudov, Nazim I., 2022. "On a study for the neutral Caputo fractional multi-delayed differential equations with noncommutative coefficient matrices," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    11. Luo, Danfeng & Tian, Mengquan & Zhu, Quanxin, 2022. "Some results on finite-time stability of stochastic fractional-order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    12. Du, Feifei & Jia, Baoguo, 2020. "Finite time stability of fractional delay difference systems: A discrete delayed Mittag-Leffler matrix function approach," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    13. Wang, Mei & Du, Feifei & Chen, Churong & Jia, Baoguo, 2019. "Asymptotic stability of (q, h)-fractional difference equations," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 158-167.
    14. Lu, Qiu & Xiao, Min & Tao, Binbin & Huang, Chengdai & Shi, Shuo & Wang, Zhengxin & Jiang, Guoping, 2019. "Complex dynamic behaviors of a congestion control system under a novel PD1n control law: Stability, bifurcation and periodic oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 242-252.
    15. Ahmed M. Elshenhab & Xingtao Wang & Omar Bazighifan & Jan Awrejcewicz, 2022. "Finite-Time Stability Analysis of Linear Differential Systems with Pure Delay," Mathematics, MDPI, vol. 10(9), pages 1-10, April.
    16. Pang, Denghao & Jiang, Wei & Liu, Song & Jun, Du, 2019. "Stability analysis for a single degree of freedom fractional oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 498-506.
    17. Ekaterina Madamlieva & Hristo Kiskinov & Milena Petkova & Andrey Zahariev, 2022. "On the Preservation with Respect to Nonlinear Perturbations of the Stability Property for Nonautonomous Linear Neutral Fractional Systems with Distributed Delays," Mathematics, MDPI, vol. 10(15), pages 1-20, July.
    18. Changjin Xu & Maoxin Liao & Peiluan Li & Qimei Xiao & Shuai Yuan, 2019. "Control Strategy for a Fractional-Order Chaotic Financial Model," Complexity, Hindawi, vol. 2019, pages 1-14, April.
    19. Abdulkafi M. Saeed & Mohammed S. Abdo & Mdi Begum Jeelani, 2021. "Existence and Ulam–Hyers Stability of a Fractional-Order Coupled System in the Frame of Generalized Hilfer Derivatives," Mathematics, MDPI, vol. 9(20), pages 1-17, October.
    20. Ahmed M. Elshenhab & Xingtao Wang & Clemente Cesarano & Barakah Almarri & Osama Moaaz, 2022. "Finite-Time Stability Analysis of Fractional Delay Systems," Mathematics, MDPI, vol. 10(11), pages 1-11, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923003053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.